
Mechanical Constraints as Common Ground 
between People and Computers

James McMichael Patten

Bachelor of Arts, University of Virginia, June 1999
Master of Science, Massachusetts Institute of Technology, June 
2001 

Submitted to the Program in Media Arts and Sciences, School of 
Architecture and Planning, in Partial Fulfillment of the Requirements 
for the Degree of Doctor of Philosophy at the 
Massachusetts Institute of Technology January 2006 

© Massachusetts Institute of Technology, 2005 

Author 
James McMichael Patten 
Program in Media Arts and Sciences

Certified by 
Hiroshi Ishii 
Associate Professor of Media Arts and Sciences 
Thesis Supervisor 

Accepted by 
Andrew B. Lippman 
Chair, Departmental Committee for Graduate Students 
Program in Media Arts and Sciences





Mechanical Constraints as Common Ground 
between People and Computers

Abstract

This thesis presents a new type of human-computer interface 
based on mechanical constraints that combines some of the 
tactile feedback and affordances of mechanical systems with 
the abstract computational power of modern computers. The 
interface is based on a tabletop interaction surface that can 
sense and move small objects on top of it. Computation is 
merged with dynamic physical processes on the tabletop that 
are exposed to and modified by the user in order to accomplish 
his or her task. The system places mechanical constraints and 
mathematical constraints on the same level, allowing users to 
guide simulations and optimization processes by constraining 
the motion of physical objects on the interaction surface. The 
interface provides ample opportunities for improvisation by 
allowing the user to employ a rich variety of everyday physical 
objects as interface elements. Subjects in an evaluation were 
more effective at solving a complex spatial layout problem using 
this system than with either of two alternative interfaces that did 
not feature actuation. 
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1 Introduction 

Long before modern electronic computers were developed, people 

relied on mechanical devices to perform computation. Many of 

these mechanical computers, such as the calculator in figure 1, 

share certain qualities that make them appealing from an interac-

tion design perspective. The way these devices perform their task, 

and how they can be used is often apparent from a brief inspection. 

One reason is that the computational behavior of these devices is 

embodied in a mechanical system that is governed by the same basic 

laws of physics that govern our interaction with the world. In con-

trast, computation inside a microprocessor, while still governed by 

laws of physics, is much more difficult to understand as it is so far 

removed from our everyday experience. 

Figure 1: Modern recreation of Thomas Fowler’s Ternary Calculating Machine
photo: Mark Glusker http://www.mortati.com/glusker
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Mechanical voting machines are another example of how a me-

chanical process that can be inspected can make a system easier to 

understand. In the 2004 United States presidential election, one of 

the criticisms of new touchscreen-based voting machines was that 

the machines’ software was difficult to validate against tampering 

with the vote tally. In contrast, many mechanical voting machines 

could be inspected just by opening the back of the machine and 

watching it increment the counters as the vote levers were pulled. 

A mechanical system such as a voting machine provides a rich 

combination of visual, tactile and aural feedback about its function 

that makes it easier to understand than if only one type of sensory 

feedback were provided. Wireless internet connections are another 

example. While they can be convenient, they are often difficult to 

debug because the process of communicating with the wireless hub 

is invisible to the user. In contrast, wired connections expose the 

physical mechanism of communication to the user, where it can be 

more easily understood and debugged. 

In this thesis I argue for a new type of interface that combines some 

of the advantages of mechanical systems with the abstract compu-

tational power of modern computers. Software-based computation 

is merged with dynamic physical processes that are exposed to and 

modified by the user in order to accomplish his or her task. By 

designing interfaces that employ the dynamic behavior of objects in 

the physical world, such as motion in response to physical forces, as 

an interface vocabulary we can create interfaces that allow people 

and computers to collaborate in novel ways. To explore this idea I 

have created an interface for solving two-dimensional spatial layout 

problems on an actuated tabletop sensing surface. Objects on this 

surface are moved under software control using electromagnets, but 

also by users standing around the table. The combination of these 

interactions, all governed by the friction and mass of the objects 

themselves directly affects the result of the task being performed. In 



13

this thesis I will show how this technique can be applied to spatial 

layout problems, and discuss how it could be generalized to other 

types of tabletop interactions.

One example of a computationally complex problem that involves 

spatial layout is cellular network design. Cellular network design 

involves determining the location and configuration of cellular tele-

phone towers in city in order to provide the best coverage possible. 

Currently these problems are solved by non-interactive software 

processes that take a long time to run and often give flawed solu-

tions. I propose an alternative approach where the during the opti-

mization process, the computer moves objects on the table around 

to reflect its current best guess about where the towers should be 

placed. Meanwhile the users physically intervene by grabbing tow-

ers and moving them away from problem areas and toward ones 

Figure 2: The cellular network design application running on the Pico platform.
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that are more desirable. Users can employ different types of physical 

constraints, such as holding an object in one place with ones’ hand, 

or placing physical barriers around certain areas to keep objects in 

or out. Due to the software association between the physical objects 

on the table and the towers being optimized, these physical con-

straints on the tabletop are implicitly translated into mathematical 

constraints in the optimization process. In this way, users can freely 

change the constraints of a running optimization process using 

their mechanical intuition for how the objects on the tabletop will 

respond to what they do.

Thesis Contributions
This thesis contains these contributions: 

– A new approach to interacting with computers based on mechanical 

constraints, where the motion of physical objects provides a dynamic 

representation of a portion of the software’s internal state, and gives 

the user a familiar vocabulary for interaction where his or her mechan-

ical intuition is valid and useful.

– A series of interaction techniques for tabletop interfaces for perform-

ing tasks common to a variety of tabletop applications.

– An application that illustrates the above concepts in use to address 

a spatial optimization problem, sufficiently developed that it may be 

compared with other interface approaches to the same problem.

– Interface hardware, software, and overall system architecture that 

supports building new applications based on these principles.

– An evaluation of performance differences between tabletop interfac-

es based on tracked physical objects and those based on touch screens.
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Spatial Optimization Problems
Spatial optimization problems are a class of engineering, design and 

operations research problems in which one must determine the best 

placement for a large number of items according to some sort of 

performance metric. Examples include factory floor planning, printed 

circuit board layout, and cellphone tower placement. Optimization 

algorithms run on computers play an important role in solving these 

problems. However, for a variety of reasons, computers are unable to 

solve most of these problems independent of human input. This limita-

tion often leads to an iterative process in which a person or group of 

people sets the starting conditions for an optimization process, and then 

waits as the computer uses this input to calculate a solution. Upon see-

ing that the computer’s solution is flawed in some unforeseen way, the 

user may reconfigure the starting conditions and ground rules of the 

optimization and try again. A cycle in this iterative process may take 

anywhere from minutes to days, depending on the type and size of the 

problem being solved. 

The interface presented in this thesis replaces this model with one of 

real-time interaction between people and computers, in which physical 

objects allow the user to modify some internal constraints of the opti-

mization as it is running and quickly explore alternative solutions to the 

problem at hand. Current systems for solving spatial layout problems 

often treat the objects to be laid out as a large parameter space, and 

then use a search process to try to find the best combination of param-

eters. The system presented in this thesis, called Pico (Physical Inter-

vention in Computational Optimization), performs a similar search, 

and displays its current best guess on the tabletop as the search unfolds. 

At any point a user may influence this best current solution by moving 

the pucks and constraints on the table. The computer’s solution search 

process in turn affects the positions of the objects. The dynamics of the 

physical objects on the table serve as a mechanism for reconciling the 

user’s movements of objects with the computer’s search process.
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Mechanical Constraints and Computational Constraints 

The user can easily modify this mechanical process as desired by placing me-

chanical constraints, or jigs, on the tabletop. In the cellphone tower placement 

application, one might want to avoid placing a tower in a park in the center of 

a city, even though the tower might provide good coverage from that posi-

tion. If the software were to move a tower into the park, one could establish 

a mechanical constraint to keep the tower out. One could bend a flexible 

barrier, such as the one shown in figure 3, to match the shape of the border 

of the park, and then place it around the park on the map. As the computer 

tried to move a tower into the park, the puck representing the tower would 

be blocked by the barrier around the park. Through the iterative process of 

reconciling the puck positions with the tower positions inside the optimization 

engine, the tower would be prevented from entering the park. The mechani-

cal constraint on the table affects the optimization results in the same way as 

would a computational constraint inside the optimization software. 

Figure 3: A physical barrier constraining the motion of a cellphone tower in the Pico application
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If one wanted to ensure a certain minimum spacing between tow-

ers, one could place circular collars around the corresponding pucks 

on the table, thus physically enforcing the constraint, as shown 

in figure 4. Because the process of optimizing the tower layout is 

governed in part by this mechanical process, a wide variety of pos-

sible interactions is available to the user based changing the objects’ 

physical interacting with the objects on the table.

Interface Affordances
Donald Norman argues that people look for the perceived affordances 

of an interface to determine how to use it [Norman]. An example of 

an affordance is a door handle that through its form communicates 

whether the door should be pulled or pushed to open. In the case 

of tangible interfaces, where interface affordances may have meta-

phorical connections to familiar objects, the designer sometimes tries 

to communicate a set of available functionality to the user through 

association to a familiar object chosen based on a set of features the 

Figure 4: A collar that enforces a minimum distance constraint between objects.
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interface is designed to support. However, this approach can be 

problematic when the user misinterprets the set of functionality that 

is available. For example, in Ishii’s musicBottles project [Ishii 2001], 

users can access sound recordings by removing corks from bottles. 

The metaphor is that the sound is “contained” inside the bottle. 

However, this metaphor suggests a variety of other interactions that 

do not work in the interface, such as pouring sound from one bottle 

to another, holding an open bottle up to one’s ear and hearing the 

sound, etc. When a user tries one of these interactions and finds that 

it does not work, he or she must adopt a more complicated men-

tal model of the interface in order to understand how to use it, in 

essence reverse engineering the system through a process of experi-

mentation with various possible functionality. While the affordances 

of the object suggest a certain set of functionality, the interface may 

contain only a subset that the designer explicitly designed in. This 

discrepancy comes from mediation between the interface and the 

actual process performing the computation. Where this mediation 

is absent the discrepancy can be avoided. One example is the record 

turntable. While it was originally conceived strictly as a way to play 

back recorded sound, the mechanism through which that sound is 

created is exposed to the user and as a result, a variety of new ways 

to make music with this device by interacting with it physically have 

emerged, such as “scratching” and other “turntablist” techniques 

[Katz 2004]. By exposing part of the device’s actual computational 

function as an interface, one can extend the possibilities for interac-

tion beyond those explicitly designed into the system to other pos-

sible interactions inferred by users. The work presented in this thesis 

applies this principle to tabletop interactive surfaces, so that users 

can apply their lifetime of knowledge about how physical objects 

interact dynamically to types of problems that are difficult to solve 

without a computer.
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In the next chapter I present an extended example of how the Pico 

system is used in the context of cellular telephone tower place-

ment. Chapter 3 covers related work in computer interfaces and 

supporting theory. Chapter 4 describes the hardware and software 

implementation of the work. Chapter 5 presents a series of interac-

tion techniques, some of which are suitable for a variety of tabletop 

sensing platforms, and others that specifically apply to interfaces in-

cluding actuation. Chapter 6 describes two experiments that evalu-

ate different aspects of this work. The final chapter presents some 

conclusions and future directions for this research. 
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2 Extended Example

Pico works by iteratively attempting to resolve a series of soft-

ware-defined constraints among a set of pucks on the interaction 

surface. A simple example of this process is shown below. A set 

of rules in software says that the distance between each of these 

three objects should be equal. The system iteratively measures 

the distances between the objects, and gradually moves them to 

satisfy the constraints, forming a triangle. This simple set of con-

straints can be satisfied by an infinite number of different positions 

of pucks on the tabletop. However, the user can add additional 

mechanical constraints to the tabletop to further constrain the 

problem. For example, the user might hold one of the pucks in 

place with his or her hand, or he or she might place an obstruction 

between one of the pucks and the others. As the system iteratively 

applies the set of rules in its software, the position of the pucks 

adjusts to conform to both the mechanical constraints applied by 

the user on the tabletop and the software constraints previously 

programmed into the application. 

1 Software rules state that 
the three pucks should be 
an equal distance from each 
other. 

2 A user grabs one of the pucks, 
moves it to the left, and holds 
it there. The system senses this 
movement and tries to pull the 
lone puck toward the other two. 
At the same time, it pulls the two 
pucks on the right toward the one 
on the left. 

3 As the user constrains the position 
of the leftmost puck, the computer’s 
attempt to move it has little effect. 
The two pucks on the right move 
to the left until the rules defined in 
software are again satisfied. 
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Pico allows users to collaborate with computers to solve complex 

problems using physical constraints as mathematical constraints. 

These physical constraints are easily defined and changed by us-

ers, and the cause and effect relationships between them are read-

ily predictable and observable in a way that can be difficult with 

constraints implemented in software.

While creating equilateral triangles on a tabletop is a simple prob-

lem, this approach can also be applied to more complex spatial 

tasks. One such task is determining the placement and configura-

tion of cellphone towers in a network to provide the best tele-

phone coverage. This problem is extremely complex, and teams 

of engineers armed with many computers often work for weeks to 

find good solutions. Computers are not able to solve these types of 

problems on their own because of the variety of subtle issues that 

must be considered. For example, if a certain politician is instru-

mental in getting a large cellphone infrastructure project approved, 

one must assure that this politician’s house has good cellphone 

coverage. There are often a variety of zoning laws and other regula-

tions, some of which may be negotiable while others are not. 

Because of these complex issues, there is often not a clear optimal 

solution to this type of spatial layout problem. Rather, there are sets 

of competing tradeoffs and interests that must be considered and 

balanced. Pico aims to allow the various interested parties to col-

laborate in such problem solving tasks by making it easy to change 

underlying constraints while the system is running, and make it 

easier to see and understand the cause and effect relationships pres-

ent in these changes. 

As the application starts, a map of the area of interest is projected 

on the interaction surface. The user has at his or her disposal three 

types of objects: the standard Pico puck, a star shaped selector puck, 
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and a boomerang-shaped navigation puck. The standard pucks 

include magnets so that the electromagnet array below the sensing 

surface can pull them as necessary. These pucks can be mapped to 

individual cellphone towers to move them. The selector puck can 

change a variety of parameters of each tower, such as the elevation, 

and angle and power output of each antenna element. The selec-

tor puck fits together with the navigation puck to activate pan and 

zoom functions, discussed in chapter 5.

The user adds new radio towers to the map by placing a puck on 

the “new tower” icon. A tower appears and moves on the map 

along with the position of the puck. This association is a varia-

tion of the “binding” concept used with pucks on the Sensetable 

[Patten 2001] system. While in Sensetable the position of a puck 

completely determines the position of the underlying digital infor-

mation, with Pico the position of the underlying digital object and 

the software-based “forces” upon it influence the position of the 

corresponding puck, while the position and physical forces upon 

the puck in turn influence the position of the underlying digital 

object. The constraint engine tries to keep these two positions 

(physical and digital) as consistent as possible while attempting to 

satisfy other constraints. 

The standard Pico puck, and star-shaped 
selector puck

The navigation puck
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As soon as the new tower is added to the map, the computer begins search-

ing for the best place to put that tower according to a fitness function based 

on a variety of factors, including the coverage area obtained by placing a 

tower in a given location (coverage score), and the cost associated with that 

placement (cost score). The computer carries out its search using simulated 

annealing [Metropolis 1953]. It compares the coverage and cost scores of 

nearby locations to the current one, and tries to move the tower away from 

areas that score poorly and closer to areas that score well. If the user moves 

the tower around the map with his or her hand, he or she will feel these 

forces as the computer identifies nearby desirable and undesirable areas for 

tower placement. If the user releases the puck, it will slowly move around 

the map on its own as the computer continues its annealing process, search-

ing for the best location. Once the computer identifies a local minimum, 

the puck will tend to stay in that area. 

If the user places another tower on the map directly adjacent to this local 

minimum, several redundant areas of coverage may be created, as shown on 

the next page. These areas will likely disrupt the previous local minimum, 

and the computer will begin searching for a new local minimum. As it does 

so, the towers will spread apart, reducing the redundant coverage area. If 

the users tries to squeeze the two pucks back together, he or she will feel 

the computer’s attempt to improve the overall coverage by separating the 

towers as a physical force pulling the two pucks away from each other. 

The user can temporarily override the computer’s attempt to separate these 

towers by simply holding them together, or connecting them with a rub-

ber band or a ring. In this case the system continues to optimize the layout 

of the towers within the constraint established by the user. The user might 

want to establish a constraint like this one if, for example, he or she wanted 

to explore what the implications might be if a certain geographic area were 

to need more network capacity than originally anticipated. 
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Two adjacent cellphone towers in the Pico application. The computer is trying 
to separate these towers to improve the overall coverage, but is unable to 
because the towers are physically attached by a rubber band. 

When the rubber band is removed, the towers move apart in response to the 
removed constraint as the computer continues searching for a better layout.
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The user can continue to add towers and exercise as much or as 

little control as he or she desires in the placement of any particular 

tower. The assumption behind this collaboration between users 

and the computer is that the users have high level ideas, concerns, 

requirements and intuition about what would constitute a good 

solution to the problem at hand. The computer on the other hand, 

has none of these things, but is very good at comparing thousands 

of similar candidate solutions and determining which is best ac-

cording to a set of criteria defined in a fitness function. By merging 

constraints defined in application software with physical constraints 

that can be constantly edited and adjusted by users, Pico aims to 

combine the unique strengths of both the users and the computer 

to solve complex spatial problems.

Because Pico’s optimization works in an incremental fashion, it can 

sometimes get “stuck” in a local minimum during the optimization 

process. When this happens, a user simply has to push a puck out of 

its equilibrium, and the search process continues. In many systems 

that use simulated annealing, the “temperature” of the system is 

a global parameter that affects all variables equally. However, the 

spatial nature of Pico and the physical vocabulary of the interface 

allow the user to increase the temperature of some variables while 

leaving others unchanged, or even forcing them to stay the same by 

holding them in place.

As the optimization process continues, Pico may move a tower into 

a location that is obviously incorrect from the user’s perspective. 

For example, early versions of the Pico cellphone tower optimi-

zation engine thought that it was very inexpensive to build tow-

ers in the middle of rivers, because the map data listed the price 

of real estate in these areas as zero. As a result, towers tended to 

move toward bodies of water near densely populated urban areas. 
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However, one could compensate for this error by placing a flexible 

boundary around the border of the river to prevent the towers from 

moving into it, as shown below. While it is unlikely that such an 

error would be incorporated into a production system for cellphone 

tower optimization, normally the users of such a system will have a 

more nuanced view of the problem at hand than will the computer. 

Such users can add and adjust boundary constraints to control the 

motions of towers. For example, if a network planning team were 

unsure whether they would receive the necessary zoning approvals 

to place a tower in a park in the middle of a city, they could com-

pare the results for both conditions by placing a boundary around 

the park and comparing the best solution in that condition to one 

where the boundary was removed. 

A barrier preventing towers from moving out of a specific geographic area on the map.
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Summary
In this example we can see some of the key advantages that Pico 

provides over previous systems:

Collaborative Interaction Between User and Computer

In past tabletop interfaces such as the Sensetable, properties of ob-

jects in the interface were either completely determined by the user’s 

movement of pucks, or instead controlled completely by software. 

This dichotomy was related to the notion of “binding”, in which 

a physical object is associated with digital content projected on the 

table, such that the graphical projection moves wherever the puck 

moves. Pico replaces this notion of binding with a more flexible one, 

where the system attempts to keep the physical and digital repre-

sentations in the same place by moving them gradually toward each 

other when their positions are in conflict. As a result the user feels 

mathematical inconsistencies in the form of physical forces pulling 

the puck in a direction that will resolve inconsistency. This method 

of constraint resolution opens up a spectrum of possibilities between 

the behavior defined in software and the user’s goals. The more per-

sistently the user pulls an object away from the position it would oth-

erwise take, the more the user influences the object’s final position. 

This spectrum of possibilities between the user’s instructions and the 

software’s autonomous activity allows the interface to incorporate the 

computer’s and user’s inputs to achieve a final result, rather than hav-

ing to choose one and reject the other.

Rich Physical Vocabulary

Because some of the computation in Pico is a result of the mechan-

ics of physical objects interacting on the sensing surface, the user 

can apply his or her knowledge and intuition about the way objects 

interact in the physical world to change the interaction of objects 

on the tabletop. For example, increasing the mass or friction of an 
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object will make it harder to move (making the associated param-

eter harder to change) and putting a slippery surface underneath an 

object will make it move more easily. The goal is to support any 

physical interaction that affects the position of the pucks on the 2D 

surface, not just the ones that were explicitly planned for during the 

design of the system, so as to leverage the user’s physical intuition as 

much as possible. 

Combination of Mechanical and Mathematical Constraints

An important part of the physical vocabulary referred to above 

is the idea that physical constraints have the same effect as math-

ematical constraints during the problem solving process. These 

constraints provide several advantages over screen based constraints, 

specifically that they are legible, flexible and ad hoc. By legible, I 

mean that users and bystanders can look at a constraint and under-

stand the cause and effect relationships between that object and the 

motion of other objects on the table without having to learn a new 

set of computer commands. By flexible I mean that the constraints 

can be easily changed without having to pause the program or use 

many mouse movements or keystrokes. Rather, one can grab a 

constraint and manipulate its physical form, with all of the advan-

tages that entails over manipulating virtual objects in terms of tactile 

feedback. By ad hoc, I mean that user’s can easily make exceptions 

to physical constraints. They serve as guidelines rather than strict 

rules. For example, if one defines a boundary on the table with a 

physical barrier to keep objects out of a certain part of the table, 

one may later see an object push against that barrier, and realize that 

the barrier should in fact not apply to that object, while still apply-

ing to others. One simply has to pick up the object and place it on 

the other side of the barrier. A separate set of software logic and 

commands is not necessary to handle this special case.
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3 Supporting Work

Tabletop Interfaces
A common mechanism employed in modern graphical user in-

terfaces (GUIs) is the “desktop metaphor” [Johnson 1989]. In this 

approach, a computer system presents its logical structure to the 

user as a graphical representation of files and folders on a simulated 

desktop. Common operations, such as deleting a file, are carried 

out based on analogies to other operations in the physical world. 

For example, in many GUIs one can drag a file to a “trash can” 

in order to delete it. However, as Pierre Wellner [Wellner 1993] 

points out, even with this desktop metaphor, we are forced to deal 

with on screen information in a different way than we interact with 

objects on a physical desktop. With objects on the physical desktop, 

we can draw on a lifetime of experience in the physical world to 

help us understand how to use them, and our senses work to-

gether to provide rich information about the objects as we interact 

with them. On the other hand, graphical objects on screen cannot 

be touched with our hands, and we must rely on tools such as a 

keyboard and mouse to interact with them. While a keyboard and 

mouse are indeed useful for tasks such as word processing, at times 

they can force users to interact with information in a manner that 

seems complex or convoluted when compared to interacting with 

objects in the physical world. However, the computer’s power also 

makes possible many operations that are not commonly available on 

a physical desktop, such as instant sorting, search and undo.
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Digital Desk 

With the Digital Desk [Wellner 1993], Wellner brought some of 

the functionality we typically associate with GUIs onto the physical 

desktop. This table used a camera and a microphone to detect fin-

ger presses on a graphical interface displayed on a desk with a video 

projector. Wellner used this desk for tasks such as graphic design 

and spreadsheet computations on physical paper. This system also 

employed some physical props, such as a scanner that would scan 

items and place them directly on the tabletop interaction surface. 

Much of the interaction relied on established GUI metaphors such 

as buttons and copy-and-paste. Wellner’s research pointed the way 

toward enabling the computer to perform some of the operations 

we traditionally associate with GUIs in a tabletop environment. 

The Digital Desk also illustrated some of the compelling reasons 

for considering computer interfaces based on horizontal interac-

tive surfaces. Because many work surfaces in our environment are 

already planar, horizontal or nearly horizontal surfaces, integrating 

computer interfaces into these surfaces may provide an opportunity 

for new types of relationships between computation and physi-

cal objects, and may help create computer systems that are more 

relevant to problem domains with established work practices based 

on tabletops.

Graspable Interfaces

Graspable Interfaces [Fitzmaurice 1996] use physical handles, such 

as six degree-of-freedom magnetic trackers, to grab and manipulate 

graphically-displayed information. These include interfaces such as 

GraspDraw, which provides multiple inputs to allow users to ma-

nipulate graphical forms to draw pictures. 
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Fitzmaurice characterized Graspable Interfaces as having five qualities:

Spatial-multiplexing of output and input

Instead of using the same device for a variety of functions at different 

times, Graspable Interfaces tend to spatially assign different functions to 

different physical regions of the interface. This approach leads to more 

engagement of the user’s motor abilities, and the tendency to represent 

objects and data in the application as physical objects that the user can 

manipulate.

Ability to use multiple devices simultaneously

The fact that there are typically multiple physical input devices means 

that users can often engage both hands, and the interface can support 

multiple users.

Use of specialized input devices

Graspable Interfaces emphasize the suitability of the physical aspects of 

the interface to the task being performed, such that the affordances of 

these objects can give the user clues about how they are to be used.

Figure 1: The GraspDraw 
application running on the 
Active Desk [Fitzmaurice 
1996]
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Spatial awareness of interface

The computer can track the position and orientation of physical 

objects in the interface and make this information available to appli-

cation software. This functionality is particularly relevant in appli-

cations like drawing and computer aided design, because the input 

space of the physical interface can be directly mapped to coordinate 

space of the drawing or design task.

Spatial reconfigurability

Finally, Fitzmaurice points out the advantages of allowing users to 

customize the spatial arrangement of interface elements to suit the 

task at hand, and facilitate rapid switching between tasks [Fitzmau-

rice 1996].

Tangible Bits
In their Tangible Bits work, Ishii and Ullmer [Ishii 1997] also 

emphasized the value of specially designed physical objects in an 

interface that take advantage of skills people already have. “Tangible 

Bits allows users to ‘grasp & manipulate’ bits in the center of users’ 

attention by coupling the bits with everyday physical objects and 

architectural surfaces.”[Ishii 1997] It aims to “bridge the gap be-

tween ... cyberspace and the physical environment” [Ishii 1997].

One advantage of interacting with computers through physical 

objects is that users receive some passive haptic feedback from the 

objects as they grasp and manipulate them. Typically there are two 

feedback loops, as shown in figure 2. The passive haptic feedback 

loop provides the user with an immediate confirmation that he or 

she has grasped the object. The user can begin manipulating the ob-

ject as desired without having to wait for the second feedback loop, 

the visual confirmation from the interface. This visual feedback 

loop takes longer because in order to respond to the user’s actions 
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it must first sense the user’s input, then process that information 

in software and finally send the output to a graphical display. The 

implications of the passive haptic feedback loop are further explored 

in chapter 6.

Another key aspect of the Tangible Bits style of interface is that 

the input and output occur in the same physical space. Ishii and 

Ullmer refer to this concept as the “seamless coupling of bits and 

atoms” [Ishii 1997]. An example of this seamless coupling of is 

Underkoffler’s urban planning project Urp, shown in figure 3 

[Underkoffler 1997]. A series of architectural models serve as the 

input devices, and output in the form of a wind and shadow simu-

lation is projected down onto the same tabletop surface, on top of 

and around the building models. Another notable aspect of Urp is 

its use of objects with very application-specific physical forms as a 

fundamental part of the interface. Physical building models repre-

sent the buildings themselves in the interactive simulation. Thus 

they give the user important visual and tactile information about 

the computational object they represent. Indicators such as a clock 

Figure 2: The double feedback 
loop in Tangible User Interfaces

user input
(touch)

user

computer

tactile 
feedback

graphical 
feedback

physical
object
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and weather vane work in reverse in the Urp system. Instead of the 

clock hands moving to indicate the passage of time, the user can 

move the clock hands to change the time of day for the shadow 

study. Likewise, he or she can change the orientation of the weath-

er vane to control the direction of the wind.

Sensetable

The author’s Sensetable [Patten 2001] project explored the use of 

tabletop interactive surfaces for applications that did not feature 

an obvious spatial mapping such as that present in urban planning 

or sketching. These applications included supply chain visualiza-

tion and musical performance. Sensetable incorporated objects that 

could be physically modified to control and represent state within 

the application such as buttons, dials, switches and tokens. For ex-

ample, a button on top of a puck could start or stop an audio track 

in the Audiopad music system. Dials on top of pucks were used 

to control the values of parameters in a business simulation in the 

context of the SCVis supply chain visualization application. Tokens 

placed on top of pucks could change the electrical charge of atoms 

and molecules in a chemistry application.

Figure 3: Underkoffler’s Urp 
system for urban planning
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Tabletop Tangible Interfaces

The diversity of interface approaches that incorporate tabletop 

interaction suggest that tabletop interaction with a computer may 

provide some compelling benefits over traditional GUIs. Some of 

these are:

Multiple users

Tabletop systems are generally able to accept input from multiple 

users at once. In contrast, the standard keyboard, mouse and display 

screen hardware was originally designed to accommodate one user 

at a time at a particular physical console. This distinction implies a 

difference in how the systems can be used in face-to-face collabora-

tion scenarios. With a keyboard and mouse, switching control from 

one user to another can involve coping strategies such as one user 

telling the other what to click and type, or users trading chairs or 

passing the keyboard and mouse back and forth. In contrast, the ef-

fort required in many tabletop interfaces for users to “take turns” is 

comparatively low. 

Coincident input and output

When tabletop interactive systems incorporate input and output in 

the same physical space, it becomes easier for onlookers to grasp the 

cause and effect relationships present between the user’s input and 

the computer’s response, because they can focus their visual atten-

tion on the table, rather than having to watch three separate spaces, 

(keyboard, mouse, screen) each with their own coordinate system. 

Tactile feedback

When the interaction includes a group of physical objects on 

the tabletop surface, these objects provide tactile feedback when 

touched. We can grasp and manipulate these physical representa-

tions faster than we can analogous graphical representations with a 

touch screen or keyboard and mouse. 
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While these advantages are relevant for a variety of applications, 

tabletop interfaces based on physical objects also have drawbacks 

when compared to GUIs. Many of these center around issues of 

flexibility and consistency. In a GUI, the computer itself is the final 

arbiter of what is displayed on the screen. The software is free to 

change the graphical state of the interface to limit the user’s choices, 

and prevent him or her from performing forbidden or invalid op-

erations. For example, options can be “greyed out” from menus, 

or buttons can disappear or simply respond to mouse clicks with a 

beep instead of performing the desired action. 

In many tabletop tangible interfaces, these types of dynamic changes 

to the interface are not possible. To avoid inconsistency between 

physical and digital state, the interface software must be designed 

to contend with every possible manipulation of the objects on the 

table, with the understanding that it may be difficult to forbid the 

user from doing any of them. 

An alternative approach is to provide graphical feedback to the user 

when they violate a software constraint through their movement of 

a physical object. For example, if one were to move an object was 

supposed to be “locked” in position, the system could simply draw 

an arrow from the object’s position to the required position, and 

possibly refuse to respond to other user input until this constraint 

were satisfied. However, this method would run the risk of defeat-

ing some of the advantages one normally gets from a TUI, such 

as being able to infer something about the state of the application 

using the sense of touch. 

TUI designers have addressed this challenge in past applications by 

carefully drawing the line between information that will be repre-

sented physically and information that will be represented digitally. 

For example, early versions of the SCVis supply chain visualization 
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Figure 5: Graphical dials in the SCVis 
system address the consistency issue 
by using graphical interface elements 
instead of tangible ones. 

Figure 4: Physical dials in the SCVis 
system, running on the Sensetable, 
provide an added affordance but can 
become inconsistent with underlying 
digital information.
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system used physical knobs to change parameters within a continu-

ously running business simulation. The knobs gave extra tactile and 

visual feedback about the state of the parameters they were control-

ling. However, the physical pucks could be “unbound” from their 

associated notes within the simulation and reassigned to others. 

Once this reassignment was complete, the position of the dial was 

often incorrect with respect to the value of the new parameter 

being controlled. Bill Buxton refers to this issue as the “nulling 

problem” [Buxton 1986]. One can change the state of the new 

simulation parameter to reflect the setting on the physical dial, or 

ask the user to reset the dial, or simply ignore the inconsistency, but 

none of these solutions is ideal. In the SCVis system, our experi-

ences suggested that the benefits provided by having a physical dial 

with a position indicator were overshadowed by these consistency 

issues. As a result, we changed the way users adjusted continuous 

parameters in SCVis to a method using the rotation of the pucks 

themselves, with a graphical position indicator projected near the 

puck as shown in figures 4 and 5.

A related approach to inconsistency between physical and digital 

state is to design the application with a degree of simplicity such 

that inconsistencies can never occur. While this approach can 

enforce discipline on the interface designer, it can also limit the 

overall functionality of the application, because features that might 

lead to inconsistent interface states must be avoided altogether. For 

example, Urp’s support for zoning rules is limited by the fact that 

the software has no way to prevent a user from placing a building 

in a location forbidden by such rules. Likewise, panning and zoom-

ing are not supported because the physical building models cannot 

change size under software control. 
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Closing the Interaction Loop

However, if one has the means to move physical objects on a table-

top under software control, one can eliminate many of these con-

sistency issues, while opening up the possibility for a wide variety 

of other interactions. In an effort to address the issue of consistency 

between physical and digital state in tabletop TUIs, Gian Pangaro 

and Dan Maynes-Aminzade developed the Actuated Workbench 

[Pangaro 2002]. This system included an array of electromagnets 

below a position sensing antenna. These electromagnets could move 

physical user interface elements along the tabletop surface, enabling 

new types of application features, such as distributed physical col-

laboration, where the motion of a certain object on one table would 

cause the corresponding object on another table to move. Pangaro 

and Maynes-Aminzade also showed how one could pan and zoom 

on a tabletop TUIs while maintaining spatial consistency between 

the pucks and their associated digital information. Finally, they 

showed how the computer could correct the user’s mistakes in a 

rule-based object placement task such as the eight queens problem.

Figure 6: Pangaro and Maynes-
Aminzade’s Actuated Workbench. 
When the user moves an object on 
one table, the corresponding object 
moves on the other one. Note the 
projected shadow on the left table to 
give a sense of remote presence.
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The Planar Manipulator Display [Rosenfeld 2004] takes a different 

technical approach to the same problem. Rather than using an array 

of electromagnets, the PMD uses a series of small battery powered 

robots that receive motion commands from a central computer. 

Perlin developed sophisticated path planning algorithms to effi-

ciently control the movements of many of these objects at the same 

time, so that they could take a short path from one point to another 

without colliding with other robots that were doing the same thing.

 

Actuation has also played a various roles in other types of tangible 

interfaces. Figure 7 shows some different uses of actuation. In some 

projects, actuation is used as a visual (and perhaps auditory) display. 

These include the Dyna-Lux[Dahley 1998], Pinwheels[Ishii 2001], 

and Phidgets [Greenberg 2001] projects. In these systems the quan-

tity to be displayed is typically a virtual one, not a result of other 

physical motion at another place or time. These systems could be 

considered ambient displays [Wizneski 1998].

Other systems deal with physical motion both as an input and 

output mechanism. These include Snibbe’s haptic systems for media 

control[Snibbe 2001], InTouch[Brave 1998], Topobo[Raffle 2004], 

Curlybot[Frei 2000], Actuated Workbench[Pangaro 2002], and the 

subject of this thesis, Pico. With Topobo and Curlybot, the user 

Figure 6: Rosenfeld’s Planar 
Manipulator Display. Battery 
powered objects drive around 
under computer control.
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and the computer take turns controlling the motion of the same object 

in a record and playback function. Much work has been done with 

haptic feedback as a user-interface tool for applications ranging from 

scientific visualization to entertainment. Surgical interfaces and simu-

lators have used haptic feedback to simulate the feel of tissue during 

medical operations[Madhani 1998]. In the GROPE system[Brooks 

1990], Fred Brooks et al. used a 6 degree-of-freedom haptic display 

together with visual display to help chemists explore and understand 

how drugs “dock” onto the surfaces of proteins. The haptic display 

provided feedback about the forces between molecules. In some tests, 

they found that haptic feedback provided an extra two-fold perfor-

mance improvement over systems using graphical feedback alone. In 

the GROPE system as with many haptic displays, feedback occurs 

through a single object that the user holds in his or her hand.

input and output 
motions happen at 
different times 

input and output 
motions happen at 
the same time

different objects are 
normally used for 
input and output.

the same object is 
normally used for 
input and output.

Haptic Media Control
Pico
Surgical simulators

Actuated Workbench
InTouch
Pico
Psybench

Curlybot
Topobo

      Figure 7: mappings of input and output motions in actuated tangible interfaces

Snibbe’s work on haptic media interfaces [Snibbe 2001] involves the 

use of haptic feedback to aid media navigation, manipulation and an-

notation. Pico is capable of interactions based on combining the user’s 

movements and mechanical constraints with the computer’s actuation 

of the same physical object. Pico may also move other physical objects 

in response to user input to resolve a system of constraints. InTouch, 
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Psybench[Brave 1998] and the Actuated Workbench can also move 

a remote object simultaneously in response to the movement of 

object. This functionality provides the opportunity for tactile com-

munication over a distance.

The categories above suggest another: interfaces in which physical 

movement is used as both an input and an output, but at different 

places and times. While I am not aware of interfaces that fit well 

in this category, it is an interesting one to consider. One possible 

application would be a variation on the Audiopad that recorded the 

user’s motions during a performance, so they could be played back 

later, perhaps on a different Audiopad. As the motions were played 

back, the user could grab the pucks and override the recorded mo-

tions to produce a derivative work.

These systems introduce the notion of two-way control, where 

both the computer and the user can control the positions of objects 

in the interface. This ability can allow one to construct interfaces 

that take advantage of the dynamic physical properties of tabletop 

objects, but to date these interfaces have been used primarily to 

insure consistency between physical and computational representa-

tions, as well as to enforce constraints previously defined in soft-

ware.

Supporting Psychology Literature

Kirsh’s Epistemic and Pragmatic Action 

A variety of psychological research supports the idea that these 

tabletop interfaces may better support certain tasks for which com-

puters are often used. One example is David Kirsh’s work on how 

people use space to accomplish different types of tasks [Kirsh 1995]. 
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Kirsh makes a distinction between epistemic action and pragmatic 

action. The former is action taken to help one think about a prob-

lem, while the latter is action taken to actually solve the problem. 

Epistemic action is a way of “offloading computation”[Kirsh 1995] 

into the environment. For example, when counting a pile of coins 

one might separate them into two piles, ones that have been count-

ed, and ones that have not. A bicycle mechanic might lay the parts 

of the bicycle down on the ground such that their spatial arrange-

ment revealed the order in which they needed to be put back on the 

bike [Kirsh 1995].

Some of these techniques can be applied in the context of a graphi-

cal user interface. For example, Kirsh found that when playing the 

video game Tetris, people often rotate the bricks as they are falling 

because it is faster to do this and figure out where to place the brick 

than it is to do the mental rotation. However, this type of modifica-

tion of one’s environment to offload computation only makes sense 

when it requires less effort than performing the task in question 

without environmental modification. Thus as an interface becomes 

more complex to use, it supports epistemic action less well. Buxton’s 

three state model of graphical input succinctly represents the com-

plexity of interacting with objects in a GUI. First, one must grasp 

the pointing device with one’s hand. Second, one must select the 

graphical object (e.g. an icon) to be manipulated with the pointing 

device. Finally, one can interact with the icon or other graphical 

object with the pointing device[Buxton 1986]. Fitzmaurice pro-

posed a corresponding two-state model of graspable input. First one 

grasps the physical object, and then one interacts with it [Fitzmau-

rice 1993].

Guiard’s Kinematic Chain Model 

Evidence suggests that tabletop tangible interfaces can support two 

handed interaction to a greater degree than on-screen GUIs. One 
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line of research supporting this idea is Guiard’s Kinematic Chain 

model [Guiard 1987]. This model relates to how people use their 

hands in two-handed tasks that involve asymmetric role division 

between the hands. Guiard found that in tasks that involve a tool 

and a target, the non-dominant hand often orients the target in 

space, while the dominant hand acts upon the target in the refer-

ence frame of the non-dominant hand. For example when writ-

ing with a pen and paper, people tend to orient the paper with the 

non-dominant hand, while writing on it with the dominant[Guiard 

1987]. Hinckley found that people can perform tasks requiring 

manual dexterity faster and more accurately in this way than if the 

hand roles are reversed [Hinckley 1997]. Interaction with mod-

ern graphical computer interfaces often requires significant manual 

dexterity, as often a great number of functions and commands share 

limited screen real estate. Fitts’ Law [Fitts 1954] shows that in these 

circumstances target acquisition time increases as the target size 

decreases. While tabletop tangible interfaces may also require sig-

nificant manual dexterity from the user, the use of physical objects 

representing “tools” and “targets” on the tabletop supports asym-

metric role division between the hands in the manner outlined by 

Guiard. While the role division of the hands in a screen-based GUI 

is also often asymmetric, the relation between the activity of the 

hands is based on the logic inside of the computer, rather than on 

the relative positioning of the hands in physical space. With a table-

top tangible interface, the non-dominant hand can provide a spatial 

reference frame for the activity of the dominant hand, while with a 

standard GUI this spatial reference frame does not exist.

Gray and Boehm-Davis’ Microstrategies 

In their paper Milliseconds Matter, Gray and Boehm-Davis intro-

duce the concept of microstrategies [Gray 2000]. Microstrategies 

are combinations of the various primitive actions that an interface 

affords. For example, one can move a mouse, or click it. Thus two 
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possible microstrategies are to click the mouse and then move it, or 

move, and then click. Gray and Boehm-Davis point out that subtle 

differences in the amount of time an interaction takes (on the or-

der of milliseconds) can drastically affect the type of strategy users 

employ with an interface [Gray 2000]. They point to several stud-

ies with dramatic results on this topic. Svendsen, O’Hara and Payne 

found that “when the cost of making a move in solving simple puz-

zles increased from one keystroke to several the strategy used to solve 

the puzzles shifted from one in which search was ‘reactive and dis-

play-based’ to one in which search was more plan-based” [Svendsen, 

O’Hara, Gray]. Other researchers found that subjects’ strategies 

changed significantly even between conditions where eye movement 

was required versus head movement [Ballard 1995, Ballard 1997].

By breaking down an interaction task into elementary “cognitive, 

perceptual, and motor” operations, Gray and Boehm-Davis com-

pute the critical path to completing a task based on a combination of 

primitive operations such as “perceive cursor location” [Gray 2000]. 

This analysis makes it possible to predict how changes in an interface 

will affect task performance times, and microstrategies. One case 

where their work suggests task performance times can suffer is in 

situations where the motor system must wait for the visual system to 

process information before proceeding [Gray 2000].

Planning vs. Experimenting 

Given that the computational power of microprocessors has been 

increasing exponentially for years, while the computational power of 

the human mind has remained roughly constant, we should design 

interfaces that make it easy to offload computation to the computer 

from the minds of users. Kirsh, Gray and Boehm-Davis’ research 

suggests that the faster one can execute the possible microstrategies 

presented by an interface, the less thinking the user will have to do 

to interact with it, and new types of problem solving approaches may 
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become plausible (e.g. iterative experimentation instead of plan-

ning). Relying on the sense of touch may be an affective way to 

pursue this goal. Humans are able to process some types of tactile 

information very quickly. The update rate considered acceptable 

for haptic rendering interfaces ranges from 200 Hz up to 1000 Hz 

[Burdea 2000]. For systems relying on graphical rendering, 30 Hz is 

often considered acceptable [Burdea 2000].

Tangible interfaces can provide certain types of tactile information 

very quickly. Consider the task of moving an on-screen object, 

either with a large graphical interface displayed on a table, or a tan-

gible interface. With the graphical interface, the user must rely on a 

visual cue from the interface that he or she has successfully acquired 

the object to be moved with his or her finger. The user does receive 

a cue that his or her finger is touching the display surface, but this is 

not enough to know if the object has been successfully acquired. In 

contrast, with a tangible interface, the user immediately receives a 

tactile cue when he or she grasps the physical object. No intermedi-

ate sensing, computation or rendering need take place. The tactile 

response allows motor movement to take place without looking for 

further graphical confirmation, a more efficient microstrategy. More 

information on this comparison is provided in chapter 6.

Collaborative Interfaces
The term “Collaborative Interfaces” refers to the notion of the 

computer as a collaborator with unique skills, rather than just a tool 

that responds to commands from users. In contrast to approaches 

based on “intelligent agents” or “expert systems” or other ap-

proaches based on artificial intelligence, the Collaborative Interfaces 

approach emphasizes the computer’s brute force computational abil-

ity, and leaves the user responsible for the higher level reasoning. In 

his discussion of “Collaborative Interfaces” [Shieber 1996], Shieber 

points out that many types of problems can be thought of as opti-
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mization problems, such as “writing a (maximally) convincing 

memo, determining the (ideal) price for a product, constructing 

a (maximally) communicative diagram.” As computers are un-

able to perform these kinds of tasks autonomously, some human 

guidance is needed. Shieber proposes letting users manage the 

global structure of the process while the computer performs lo-

cal optimization. Shieber concludes that “the key to designing 

an interface then becomes representing the problem in such a 

way that this nice division of roles is feasible” [Shieber 1996].

One example of a collaborative interface is the Design Galleries 

(tm) system [Marks 1997]. Used for setting groups of animation 

parameters, Design Galleries allows users to explore a multi-

dimensional parameter space as a three-dimensional graphical 

space on the screen. The computer’s computational power is 

leveraged to populate the design space with many examples of 

possible parameter combinations and the results they provide. 

The user is left to explore this space and identify regions of it 

that correspond to desirable animation results, and thus desirable 

starting parameters.

The idea of collaborative interfaces is a compelling one for 

problems that are very computationally complex, yet cannot 

be solved autonomously by a computer. There are a variety of 

types of problems in this category, and along with them, a vari-

ety of reasons while computers cannot handle them alone. Some 

possible reasons include:

Desired result is difficult to quantify

Often computer optimization involves specifying a quantitative 

fitness metric with which to compare alternative solutions to a 

problem. If this fitness function is difficult to define or evaluate, 

it can be difficult for the computer to solve the problem alone. 
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For example, in the task of placing cellular telephone towers in a 

city, one must consider quantitative metrics of signal quality, but 

one must also consider sensitive and subtle political issues that are 

difficult to quantify.

Limited software tools

Computer optimization tools rarely reflect the depth of domain 

knowledge of experts who have been working on a given problem 

for decades. In such circumstances, experts often use the software 

tools as a starting point where one can begin a fine tuning process.

Enormous computational complexity

In some applications the space of parameters to be adjusted is so 

large that computer algorithms can greatly benefit from the user 

pruning the space by eliminating irrelevant or invalid parameter 

combinations that the computer itself would not be able to identify.

Spatial Applications
Many of these applications involve the placement of objects in 

physical space. Examples include:

Placement of rooms in a building

With this problem one wants to minimize the distance workers 

must travel to accomplish common tasks, while minimizing the 

construction and maintenance costs of the facility. 

Placement of integrated circuits on a PCB

Many software packages exist for routing electrical paths between 

components on PCBs. However, layout applications usually are not 

able to place the actual components themselves.
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CNC machining

One task in the manufacturing domain is the arrangement of parts 

to be CNC machined so as to use the smallest amount of raw mate-

rials possible.

Cellular network planning

The aim is to place and configure cellular telephone towers to opti-

mize coverage while minimizing cost.

Placement of bus stops in a city

The goal is to provide easily accessible transportation coverage 

while minimizing travel times and cost.

Collaborative Tabletop TUIs
Given that many of these applications involve a strong spatial com-

ponent, and that past tabletop TUIs have successfully address spatial 

applications, [Underkoffler 1999, Fjeld 1998], and that collaborative 

interfaces may benefit from an interface that effectively combines 

the strengths of user and computer [Shieber 1996], the collaborative 

interface approach is a compelling one to consider in the context of 

tabletop TUIs. 

In Pico I explore this idea using an actuation system to provide op-

portunities for direct, physical collaboration between the user and 

computer. Past user interfaces based on computer controlled actua-

tion have used the actuation as a means for the computer to move 

objects from point A to point B. If an object encounters a physical 

obstruction on the way from A to B, the system’s control algo-

rithms may attempt to compensate by using more force to move 

the object at the desired speed. Such an obstruction would nor-

mally be considered an error, an exception to the normal function 

of the application. However, if the positions of objects on the table 
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are considered to be a portion of the system’s computational state, 

users could employ such obstructions to collaborate with the com-

puter, opening up a rich space of possibilities between the extremes 

of doing exactly what the computer wants, or exactly what the user 

wants. 

Constraints

Ullmer’s work on TUIs explores a rich set of physical constraints to 

impart structure to physical arrangements in token systems. [Ullmer 

2002] Ullmer often uses these constraints to help users formulate 

and adjust complex database queries. At times he refers to them as 

“interpretive constraints” because of their role in “mapping compo-

sitions of physical tokens to various digital interpretations.” [Ullmer 

2002] Ullmer also emphasizes the ability of computers to sense the 

position of tokens, and change the way the tokens are interpreted 

accordingly. For example, one might place a series of tokens rep-

resenting different database parameters into a rack representing a 

database query. This action would be sensed by Ullmer’s system, 

which would then interpret tokens that were immediately adja-

cent to one another as having an “AND” relationship, while other 

tokens would have an implicit “OR” relationship. Here the physi-

cal constraint is sensed by the computer and provides context to the 

motions the user is making. The constraint also limits the physical 

motions of the tokens to a predefined set of valid motions in the 

context of the application, preventing the user from manipulat-

ing the tokens in a way that has no valid interpretation in software 

[Ullmer 2002]. 

While constraints within Pico also serve to limit the physical mo-

tion of objects in the interface, their role within the system is differ-

ent than in Ullmer’s work. I refer to these constraints as “mechani-

cal constraints” to emphasize their relationship to the movement 
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of objects in the interface over time. Mechanics is the branch of 

physics dealing with “the set of physical laws governing and math-

ematically describing the motions of bodies and aggregates of bod-

ies.” [Goldstein 2002]. The general concept is that users can add, 

remove and manipulate constraints on the tabletop to influence 

the way objects on the table move. The computer does not sense 

these constraints, rather it only senses the positions of objects that 

are being influenced by them. Because computer controlled mo-

tion is part of the software’s real-time interaction loop, the results 

of the computer’s attempt to move objects on the tabletop within 

the constraints established by the user are directly fed back into the 

ongoing computational process. In some circumstances these me-

chanical constraints can be thought of as performing computation, 

just as a series of gears can be used to perform multiplication. As the 

objects move on the tabletop, their motion as guided by constraints 

will “compute” an equilibrium between the various mathemati-
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Figure 8: Mechanical constraints and software constraints 
combine to affect the motion of the pucks.
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cal forces acting on the tabletop objects. For example, if two pucks 

that are trying to move simultaneously to two separate locations A 

and B are bound together with a rubber band, they will settle at a 

position near the midpoint between A and B. For more advanced 

examples of this concept please see chapter 5. A model for the re-

lationship between physical and computational constraints is shown 

in figure 8.

In the Pico system, the motion of pucks on the tabletop is sub-

ject to the physical constraints imposed by objects on the table, as 

well as the user’s hands. While the computer cannot sense these, 

it can sense the positions of the objects as they are affected by the 

constraints. The software application running on Pico may have 

it’s own set of internal rules, heuristics and constraints that govern 

how it tries to move computational objects in the application i.e. 

cellphone towers etc. These rules may be arbitrarily complex and 

difficult for the user to change without reconfiguring the software. 

However, just as the position of the physical pucks influence the 

positions of their associated digital objects, the positions of these 

digital objects in turn reflect back upon the physical objects. The 

system continuously tries to keep the physical and software repre-

sentations consistent, establishing a relationship between the me-

chanical constraints and the mathematical ones. This association 

between mechanical and mathematical constraints brings the cause 

and effect relationships between objects in the application software 

into the physical world, where the user can bring his or her me-

chanical intuition to bear on the task.

Because we experience the mechanical properties of objects on a 

daily basis, it is reasonable to expect users to have some intuition for 

how small moving objects on the tabletop will interact with each 

other. Mechanical constraints use this knowledge as a foundation 

for a variety of interaction techniques to guide and constrain mo-
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tion on the tabletop. In his work on “Reality-based Interaction,” 

Jacob argues that many recent interaction styles employ the strategy 

of leveraging preexisting knowledge and skills to make interac-

tion easier, and that this strategy is a promising direction for future 

research [Jacob 2006].

Summary
A variety of past work in tabletop interfaces has demonstrated al-

ternatives to the ubiquitous graphical user interface that take better 

advantage of the skills the people have developed in their lifetime 

of experience with the physical world [Wellner 1993, Fitzmaurice 

1996]. One recent theme in the context of tabletop interfaces are 

interfaces using groups of tracked objects on an interaction surface 

[Underkoffler 1999, Fjeld 1998]. One limitation of this approach 

is that the interface designer must be careful to ensure consistency 

between physical and digital state in the interface. Actuation of the 

objects on the tabletop is one solution to this problem [Pangaro 

2002, Rosenfeld 2004]. 

Recent work in tangible interfaces has also investigated the use of 

physical constraints to help users and computers interpret the mean-

ing of spatial relationships between objects in the interface [Ullmer 

2002].  Another possible use for constraints in a tangible interface is 

to map them directly to mathematical constraints in the context of 

an application using actuation. With this approach, one’s intuition 

about the behavior of mechanical systems in the physical world 

would become relevant to the application at hand. These mechani-

cal constraints could be used to guide the computer’s efforts in the 

context of a collaborative system in which the user focuses on the 

high level structure of the problem to be solved, while the com-

puter focuses on the details. 
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Research suggests that people will readily change their problem 

solving strategies when using computer interfaces on the basis of 

differences in the time to complete a task on the order of milli-

seconds [Gray 2000]. When it is more efficient to do so, subjects 

offload computation onto the interface itself to help solve a prob-

lem [Kirsh 1995]. If Pico could make it easier for users to express 

their intentions by leveraging users’ mechanical intuition, it might 

encourage users to change their problem solving strategy to one in 

which Pico handles more of the work, and the user provides high 

level guidance using mechanical constraints.
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4 Implementation

Hardware
The development of Pico involved the combination of the exist-

ing Sensetable [Patten 2001, Patten 2002] hardware platform with 

newly developed actuation technologies, and newly developed 

software. A high-level system diagram is shown in figure 1. The 

Sensetable is used to determine the positions of objects on the 

tabletop surface. An array of electromagnets is used to move these 

objects. Application software draws graphics and responds to user 

input, while several pieces of middleware allow these various system 

parts to communicate.

sensetable (senses objects)

projector application
software

fig. 1. system architecture

magnet array (moves objects)

constraint
resolver

sensing 
software

middleware

actuation 
software optimizer
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Actuation
One key component of the development is a system for moving ob-

jects on a tabletop surface. Several existing systems already do this. 

Rosenfeld’s Planar Manipulator Display [Rosenfeld 2004] uses a series 

of small battery powered robots that receive motion commands from 

a central computer. The robots are placed on a translucent horizontal 

surface, where they can move using a set of wheels. Each robot has a 

set of batteries and a small LED on it’s undercarriage. A two dimen-

sional position sensitive detector tracks the position of this LED. A 

computer plans the motion of the all of the robots on the table, and 

transmits motion commands to them. Reznik and Canny’s Universal 

Planar Manipulator [Reznik 2001] uses an ultrasonic approach to move 

a series of small objects on a tabletop surface. Interference patterns on 

the tabletop would create vibrations that could be controlled to move 

multiple objects in arbitrary directions at the same time. Pangaro and 

Maynes-Aminzade’s Actuated Workbench [Pangaro 2002], uses an 

array of electromagnets below the interaction surface. When coupled 

with a sensing system such as the Sensetable or a video camera, objects 

with embedded magnets could be moved by triggering the correct 

combinations of electromagnets.

Design Considerations

Holomonic drive

One of the fundamental aspects of the motion of physical objects in 

Pico is that objects in the interface must respond to physical constraints 

in a way that is transparent to the user. One aspect of this transparency 

is that objects must be able to move equally easily in all directions. For 

this reason, a propulsion system based on a series of parallel wheels, 

such as in a car, would not be acceptable as it moves easily in the direc-

tion of the wheels, and not very easily when moved perpendicular to 

this direction. There are holomonic drives for robots that do have this 

property, however.
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Size of table and objects

The ratio of the size of the interaction space to the size of the 

physical objects within it is an important factor in its utility. As the 

objects become larger, it becomes more difficult to precisely arrange 

them in relation to each other without running out of workspace. 

As well, the diameter of an object may be too large to unambigu-

ously identify the location of the object it represents in the context 

of an application. For example, it would be difficult to place cell-

phone towers on a map of a city when the pucks representing the 

towers were each several city blocks wide on the scale of the map.

The ratio of these sizes aside, one generally would not want the 

table to be so large that one could not comfortably reach all parts of 

it, and one would want pucks of a size that could be easily grasped. 

Pucks from 1” to 2” in diameter work well for this purpose.

No batteries

Batteries in the objects should be avoided if possible, to avoid the 

need to replace or recharge them.

The Actuated Workbench
These constraints are similar to the ones described by Pangaro and 

Maynes-Aminzade regarding the Actuated Workbench system. The 

primary additions to their design considerations for the construction 

of Pico were the ratio of object size to surface size, and the need for 

pucks to move equally easily in all directions. Given that the Actu-

ated Workbench already satisfied the latter of these, I decided to use 

its design as the starting point of the actuation system for Pico. The 

main technical issues to be addressed with the Actuated Workbench 

were scalability and robustness. Parts in the Actuated Workbench 

system fail at a rate that made producing a larger replica of it dif-

ficult. As well, the field generated by the magnets is weak enough 
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that sometimes it is not able to move objects on the table. Fi-

nally, the system requires control circuitry and wiring that rests 

on the table next to the magnet array, making tiling of multiple 

arrays difficult.

In order to resolve these issues I redesigned the actuation hard-

ware to be more scalable and robust. Electromagnetic coils are 

driven with a grid of N and P channel MOSFETs, controlled 

by an Atmel AVR 8 bit microcontroller. The circuitry exists on 

three separate circuit boards, A, B, and C in figures 2, 3 and 4. 

The electromagnets are mounted to the top of circuit board B 

with a stainless steel mounting bracket. A large bipolar capacitor, 

critically damped with the electromagnet, is mounted in paral-

lel with it, to make the switching of the magnets more efficient. 

Board B is designed to support driving the magnets in both 

directions. However, in practice the ability to repel objects on 

the table was not used in any Pico application, so much of the 

circuitry for this mode has been left unpopulated on the board. 

Each magnet has an N-channel and a P-channel MOSFET as-

sociated with it which controls the flow of current into or out of 

one side of it. The other side of all of the magnets is connected 

to a single N-channel, P-channel pair, which can enable or dis-

able all of the magnets on the card. This MOSFET pair is driven 

by an International Rectifier IR 2181S driver chip, which is 

designed to drive two N-channel MOSFETs. The output of one 

of the N-channel MOSFETs controls the P-channel MOSFET. 

These inputs are controlled by logic level inputs from board A. 

The remainder of the MOSFETs are controlled by 35V-45V 

signalling inputs from board C.
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Board C contains a series of IR2181 chips that switch the 5V logic 

inputs from board A up to the 35V-45V range necessary to control 

the MOSFETs. It connects to board A with a ribbon cable, which 

carries the 32 control signals for the 16 magnets on board B. The 

main purpose of Board C is to separate the higher voltage circuitry 

from board A.

Figure 2: Pico board C con-
nects the mosfets on board B 
to board A’s logic outputs.

Figure 3: Pico board A con-
nects the computer to the 
magnets using USB, and 
sends switching signals to the 
magnets.

Figure 4: Pico board B contains 
the electromagnets and associ-
ated higher voltage circuitry.
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Board A contains the microprocessor that controls the entire sys-

tem. It is an 8-bit Atmel AVR AT Mega 32 processor, which con-

nects to a desktop computer by way of an 8-bit parallel data bus to 

a USB245M USB controller board. Data is transmitted to and from 

the computer using a USB 1.1 connection. Mainly the computer 

sends a series of commands about which magnets to turn on, and at 

what duty cycle. The AVR chip turns magnets on and off by clock-

ing their states through a series of buffers and into a series of NOT 

and AND discrete logic gates. These gates make it impossible to 

inadvertently turn a magnet on forward and backward at the same 

time, which causes a short.

Board B slides into slots in boards A and C. This is intended to ease 

troubleshooting in case of electrical failure. A suspect board B can 

be replaced quickly to determine whether an electrical fault exists 

in the control circuitry or on the board B itself.

Figure 5: Boards A, B and C fit together like this.
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Ratings
The lowest rated component in the system is the capacitor in 

parallel with each magnet, which is rated at 50V. Typically the 

system is driven at 45V using a supply capable of producing 5A of 

current. This 5A current limitation protects other components in 

case of electrical failure. The lowest rated component in terms of 

current is the card edge connector that connects board B to board 

C, where each connection is rated at 3A. Two connections are 

used in parallel to carry the high voltage and ground supply lines.

Firmware
The desktop computer transmits 50 magnet updates to the AVR 

chip each second. Each update contains the desired state and duty 

cycle for every magnet in the 16x8 array. The AVR adjusts the 

magnet control lines based on these commands, and as a safety 

feature, shuts down all magnets if it does not receive any com-

mands for 4 seconds.

During the magnet drive process, each row in which magnets are 

to be used is turned on, while the corresponding column MOS-

FETs are also enabled. When both of these events happen at the 

same time, the electromagnet corresponding to the given row and 

column is enabled.

Because the magnets are arranged in a grid, many computer 

graphics ideas are relevant if one thinks of the magnets as pixels. 

Essentially, the computer transmits a frame to be rendered, and 

the AVR renders that frame to the magnets repeatedly until a new 

frame is received. The AVR refreshes the magnets at a rate of 

roughly 400 Hz.
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Design Issues

Overheating

Due the high levels of current involved, overheating is a concern 

when the electromagnetic array is driven for an extended period of 

time. This issue is addressed by software that continuously monitors 

the duty cycle of each magnet in the array as it is turned on and off. If 

a given magnet exceeds a 25% duty cycle for more than 30 seconds, 

it is turned of briefly to give it a chance to cool down. Typically, this 

rarely happens except when the user is pulling an object or blocking 

it for more than 30 seconds. Users may notice this duty cycling as a 

reduction of the system’s magnetic pull of a puck they are holding,

Calibration

In order to know which magnets must be activated to move a given 

puck to a desired position on the interaction surface, one must have 

precise measurements of the position and orientation of the sens-

ing surface with respect to the magnet array. Pico performs this 

calibration automatically upon startup as described below. For this 

autocalibration to work, the system requires that only one puck be on 

the table when the system starts. First the magnet array activates each 

column of magnets in sequence from right to left. Then the leftmost 

two columns of magnets are activated in sequence. These two series 

of activations have the effect of moving the puck to the far left corner 

of the actuation surface even though its initial position is not known. 

A position reading is taken at this point with the Sensetable antenna, 

and this process is repeated for two more corners of the surface. With 

three known points in the space it is possible to create a calibration 

matrix with which one can multiply points in one coordinate space 

to achieve points in the other. Computationally, this approach is 

somewhat more intensive than algorithms to calibrate touch screens, 

or digitizers, because these algorithms typically assume no rotational 

offset between the two coordinate spaces. Because there are only 
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three calibration points, the magnets must be evenly spaced for this 

calibration scheme to work well. Braces on the sides of the circuit 

boards help ensure even spacing.

Tiling

Each 8 x 16 magnet array is controlled by its own independent 

USB connection. These smaller arrays are mapping into one large 

array for control purposes.

Duty cycling

The software supports four different magnet power levels which 

are obtained by turning the magnets on at varying rates under the 

control of the AVR CPU on board A. This increases the precision 

with which the system can position objects from about 1 cm with 

the original Actuated Workbench design [Pangaro 2002] to about 2 

mm with Pico’s magnet array.

Figure 6: The completed magnet array
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Dimensions

Each board B contains 16 magnets in a row. Each is roughly .75” in 

diameter leading to an overall length of 12” for the group. A single 

board A and board C can accommodate 8 board Bs, yielding an 8 x 

16 magnet array measuring approximately 6” x 12”. Four of these 

8x16 arrays are tiled in a 2x2 configuration to yield an overall size 

of 16x32 magnets, and 12” x 24”. The total number of magnets in 

the system is 512.

Sensetable 
The original Sensetable prototype was developed as part of my 

master’s thesis at MIT. The original version used modified wireless 

mice from a Wacom digitizer tablet to sense the positions of several 

pucks on a table. While a standard Wacom tablet can track up to 

two objects on it’s surface at a time, the Sensetable used custom-

designed hardware to track six objects simultaneously. The custom 

hardware rapidly enabled and disabled the inductor used to harvest 

power from the sensing surface in a random fashion. Because each 

of the pucks had a unique digital ID, custom software was able to 

disambiguate the position readings from the various pucks, though 

the period of continuous tracking for each tag was around 0.2 sec-

onds. The custom circuit also included a capacitive touch sensor, so 

that as it was moved by a human hand, it would keep the inductor 

powered for longer periods of time, ensuring smoother tracking.

The position sensing system used for Pico involves a modified LC 

tag sensing antenna from a children’s toy called Ellie’s Enchanted 

Garden, which was once produced by the Zowie Intertainment 

Corporation. Media Lab sponsor NTT Comware has also devel-

oped a commercial version of the Sensetable. However, at a price 

of approximately $5-10 online, Ellie’s Enchanted Garden is the 

most cost-effective approach for this type of research. Several iden-

tical circuits removed from the Zowie “Ellie’s Enchanted Garden” 
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playset are aligned next to each other on a flat surface with a slight 

overlap to provide a larger sensing area with no gaps. Each of these 

circuits consists of some digital communication and control circuitry 

and circuitry to excite and sense excitation on eight antenna loops. 

Four of these loops are for sensing the position of tags in the X di-

mension, and four are for the Y dimension.

The objects tracked by the system contain LC tags, which are an 

inductor and a capacitor in series. These tags resonate at different 

frequencies according to their inductance and capacitance. In the 

case of the Zowie system, there are nine unique frequencies, ranging 

from 790 kHz to 4.59 MHz. The system locates these LC tags using 

several steps. It sends out an excitation pulse consisting of several 

cycles at the resonant frequency of the tag. If the tag is close to the 

antenna plane, ideally with the axis of symmetry of its coil perpen-

dicular to the antenna plane, the tag will magnetically couple with 

the exciting antenna. This induces EMF in the tag, causing it to 

oscillate and generate its own magnetic field. The system then mea-

sures the amount of coupling between this tag and several receiving 

antennas. Through ratiometric comparison of the excitation of these 

antennas, it is possible to determine the position of the LC tag.

Perhaps the most clever aspect of the design is the antenna geom-

etry. As mentioned above there are four antennas used to compute 

the position in each dimension. These are divided into two pairs, 

one of which is used for fine grain positioning, the other for coarse 

grain positioning. The antennas are wound such that the coupling 

with an LC tag varies sinusoidially as a function of the tag’s posi-

tion. For each pair of antennas, the period of this excitation is the 

same, but the phase is offset by 90 degrees. Essentially one varies as 

a sine function of position, while the other varies as a cosine. This 

means that one can compute the position of the tag by taking the 

inverse tangent of the ratio of the excitation of a pair of antennas. 
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In the case of the coarse grained antenna pair, the periods of these 

sinusoidal functions are the length of the sensing surface itself. For 

the fine grained antenna pair there are more periods. The sensing 

area is rectangular, and the shorter dimension has periods in the 

fine grained antenna pair oscillation, while the longer dimension 

has nine. One can use the coarse measurement to determine which 

period to consider for the fine grained measurement.

A specific antenna geometry is used to cause the excitation to 

vary sinusoidally as described above. A diagram of this geometry 

is shown below. This diagram only shows one antenna loop. The 

others will have different patterns as a function of the desired pe-

riods and phases. As the tag moves across this geometry, it moves 

from an area where it is completely inside the antenna loop (shown 

in white in the figure) to one where it is outside the loop (light 

gray), and then back inside the loop, but this time the path of the 

wire loop around the antenna travels in the opposite direction 

(shown in dark gray). The excitation of the receiving antenna by 

the LC tag is 180 degrees out of phase between the white and dark 

grey areas in the figure. As the tag moves over the light grey areas 

in the figure, a portion of the area of the 

coil inside the tag is in a white area, while 

another portion is in the dark grey area. 

This leads to a resonance value between 

the two extremes. An important size re-

lationship here is that the diameter of the 

inductor in the tag should be double the 

spacing labeled as d/2 in the figure. Also 

the spacing for areas where the tag is inside 

the antenna loop, labeled as d in the pic-

ture, should be roughly the diameter of the 

Figure 7: A special antenna geometry creates a 
resonance that varies sinusoidally in amplitude 
as a linear function of tag position.
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LC tag. This helps yield a smooth sinusoid as the tag moves across 

these boundaries. The spiral weave of these antenna loops also helps 

cancel out external interference. 

The system can also sense a small amount of Z position informa-

tion. While the ratio of the intensities of the excitations of the 

receive antennas can be used to compute X and Y position, both 

of these intensities will decrease as the tag is lifted off of the sensing 

surface. By measuring this decrease one can tell when a tag is lifted 

off of the surface. However, this measurement is less reliable than 

the X and Y measurement because the amplitude of the resonance 

varies as a function of the tag frequency and can also decrease if the 

tag becomes detuned over time, or approaches one of the edges of 

the sensing surface.

Interfacing the Sensetable hardware with the Actuated Workbench 

hardware complicates the tracking problem to an extent, because 

both the electromagnets in the Actuated Workbench, along with 

the permanent magnets inside the pucks themselves change the way 

the tags resonate. Based on tests with a network analyzer, the per-

Figure 8: A Pico tag with an 
LC resonator in the middle 
and four rare-earth magnets 
around its circumference
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manent magnet seems to saturate the inductor inside the tag, effectively decreas-

ing the inductance. This decrease in inductance increases the frequency of the 

resonance, while damping it somewhat as well. The electromagnets underneath 

the sensing surface reduce overall amplitude of the resonance, without shifting 

the frequency much. While the original Actuated Workbench used permanent 

magnets placed at the center of the inductor in the LC tag, in this prototype I 

avoided some of these resonance issues by placing a series of tall, thin magnets 

outside the diameter of the inductor. Due to their position and alignment, these 

magnets interfere with the tracking system to a much smaller degree. These 

cylindrical rare-earth magnets measure 4 mm in diameter and 12 mm in height. 

Four are placed along the outside edge of the tag, as shown in figure 6. With the 

signal strength issues caused by the permanent magnets almost completely allevi-

ated, one can simply ignore the interference caused by the electromagnets and 

still have sufficient signal quality to reliably track the positions of objects on the 

interaction surface.

One challenge with overlapping multiple sensing antennas is preventing interfer-

ence between them. In the Sensetable system, a sophisticated piece of software 

ensures that two adjacent antenna arrays never poll for the same tag frequency 

at the same time. This software, called the Board Manager, keeps a running 

estimate of which antenna array will be most likely to find the position of each 

given tag. This estimate is determined by the last known tag position, as well as 

its speed and direction of travel. To compensate for the limited number of tags 

Figure 9: The Pico hardware, 
partially disassembled to re-
veal the overlapping sensing 
antenna arrays.
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that can be sensed in a given time (approximately 40 per second in 

the current system) the Board Manager also prioritizes the tags, read-

ing the positions of stationary tags less frequently than the positions 

of moving ones. Application software can also request that specific 

tags be given a higher tracking priority than others.

Magnet Control Software
Before the construction of the new version of the magnet array, I 

anticipated that changes in the Sensetable control software would be 

required to reliably control the movement of objects on top of the 

magnet array. The concern was that without more rapid feedback 

from the Sensetable into the control loop, the control loop would 

not be fast enough to avoid instability. However, this instability 

turned out not to be an issue.

The control loop works as follows: If the software is trying to move 

an object from point A to B, it first finds a point that is 0.8 units 

away from the object’s current location, where each unit is the di-

ameter of one electromagnet (0.75”). This point is located inside of a 

square, such that the corners of that square are defined by four elec-

tromagnets that are adjacent to each other. Based on the distance of 

the point to each of the four corners, a duty cycle for each of these 

four magnets is calculated, such that the sum of the forces will draw 

the puck toward the point. These duty cycles are sent to the control 

hardware, which then turns the magnets on and off appropriately. 

With a standard control loop, an opportunity for instability might 

arise at this point, due to the chance that the puck might undershoot 

or overshoot its destination. However, as the puck approaches the 

electromagnets that are pulling it, the strength of their attraction 

increases, and a larger component of that force is pulling the object 

down, perpendicular to the direction of travel. This downward pull 

increases the friction of the puck with the interaction surface, slow-
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ing the puck down as it reaches it’s goal. When new position infor-

mation about the puck is received from the Sensetable, the control 

software selects a new goal point for the motion of the puck. If the 

puck has not moved, the new goal point will be the same as the old 

one. If the puck has moved closer to its final destination, then so will 

its next goal point.

One important result of this simple design is that the control system 

is robust in the face of mechanical obstructions on the interaction 

surface. This robustness is important because adding and removing 

mechanical constraints on the tabletop is one of the primary ways that 

one interacts with Pico. Rather than changing the force applied to the 

puck if an obstruction is encountered, the control software maintains a 

constant force, trying to move the puck in the desired direction. The 

resulting motion of the puck is determined by the physics of the inter-

action of the puck with the various forces upon it, the magnetic force, 

as well as the friction, mass and force resulting from other entities, 

such as the user’s hand, or a heavy object placed on top of the puck.

In the case that the ultimate destination of the puck is less than 0.8 

units from the current object location, a different actuation pattern 

is used to move the puck more slowly, preventing overshoot. This 

actuation pattern drives the magnets at a lower frequency (about 10 

Hz), inducing a mechanical vibration in the puck which slowly moves 

it into position. Using this method, the current prototype is able to 

move objects within the precision afforded by the Sensetable (cur-

rently about 2mm). Without this technique, the positioning accuracy 

is about 1cm, as with the original Actuated Workbench.

One addition to the Sensetable control software added in the pro-

cess of building Pico was more sophisticated filtering code for the 

raw position data read from the sensing antennas. Past versions of this 

software use a thresholding scheme, in which position data is ignored 
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if it is too different from the last position observed. This had the 

effect of making the system occasionally unresponsive when objects 

were moved rapidly across the interaction surface. The new model, 

rather than considering distance alone, also considers velocity and 

acceleration. Given that the minimum mass of a puck is known 

in advance, one can predict that its velocity and acceleration will 

generally fall within certain bounds, given the forces expected to be 

acting upon it. Using this assumption, one can reject readings that 

indicate a sudden acceleration, while allowing ones that show more 

reasonable acceleration values, even if this movement results in a 

large travel distance between sensor readings. The actual threshold 

values used were determined experimentally by quickly moving a 

puck from one side of the interaction surface to the other from a 

stationary position. The units of the acceleration observed using this 

technique are pixels/s/s, where a pixel measures about 1mm, de-

pending on the projector alignment. Based on this experimentation 

a value of 20,000 pixels/s/s was obtained, which is roughly 2Gs. 

This value could be adjusted to be more responsive to extremely 

fast motions while allowing more noise, or to allow less noise, 

while requiring slower motions.
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Application Software 
The application software is responsible for displaying information 

on the tabletop, based on data received from the optimizer and the

sensing software. Its architecture is similar to an application for

the Sensetable system, which in turn is based on the “rendering 

loop” model often used with the OpenGl graphics library. The 

pseudocode for a Pico application is as follows:

def renderCallback():   
  drawApplicationUI()

def movementCallback(puck):
  doSomethingApplicationSpecific(puck)

def idleCallback():
 
  pucks = tagTracker.service() #Update object positions using 
Sensetable tracking data.
  for p in pucks:
    movementCallback(p)
  runApplicationOptimizer() #Iteratively improve the spatial layout 
with application specific code
  requiredMovements = constraintManager.resolve() #Find pucks whose 
positions are violating a constraint, and compute motions necessary 
to resolve them
  for puck,destination in requiredMovements:
    awb.updateMotion(puck, destination) #Set each puck on a path 
toward resolving currently unresolved constraints
  if awb.isReady(): #Make sure we are not flooding the magnet hard-
ware with data
   awb.render() #Send control commands to the magnet hardware

 

Most of the extra behavior required of a Pico application that does 

not exist in a standard on-screen OpenGL application happens in 

the OpenGL idle callback. The application must periodically read 

data from the position sensing hardware, run the constraint engine 

to detect any constraints that are being violated, compute the ac-

tions necessary to resolve those constraints, and periodically issue 

the corresponding commands to the Actuated Workbench server, 

which in turn relays them to the magnet array itself.
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For the cellular tower planning application, this system displays tower 

locations and associated parameters such as elevation, output power, 

tilt, azimuth, etc. It also displays other data such as ground elevation, 

“urban clutter” produced by nearby buildings, etc. The user is be able 

to change most of these parameters by interacting with the interface. 

The interaction techniques used in this software are described in the 

next chapter.

Optimizer 
The optimizer is a software module specific to the application domain 

that performs a parameter space search for the best parameter values 

according to a given fitness function. For example, in an application 

regarding the placement of machines on a factory floor, the primary 

parameters would be the x and y position of the machines as well as 

their orientation. The Pico software architecture is designed to mini-

mize the software development necessary to connect a batch optimizer 

designed for non-interactive use into the system. However, an opti-

mizer must meet several requirements to be usable with Pico:

Fitness function

The optimizer must have a function for quantifying the “fitness” of a 

particular set of parameters, and that function must be able to run at 

an interactive rate. This function will be called periodically as potential 

movements of objects on the table are considered.

Iterative approach

Rather than taking a set of parameter values and searching at length for 

an optimal solution, the optimizer must be able to take a set of starting 

conditions and return a similar, but incrementally better configuration 

than what it started with. When applied iteratively, this type of incre-

mental convergence in the parameter space leads to smooth motion of 

objects on the table that is easy for users to understand and modify.
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If an optimization algorithm is not well suited for this type of itera-

tive use, one approach to making it so is to build a helper function 

that compares the value of the fitness function for the current best 

solution to that of each of a group of nearby points in the solution 

space. Based on the fitness of each of these alternatives, determine 

the gradient toward the best solution, and adjust the parameter 

values by a small amount in the direction of that gradient. A well 

defined interface is used to connect this software with other parts of 

the system to reduce the amount of effort required to replace one 

optimizer with another.

software layer

hardware layer

software “springs” 
that try to pull hard-
ware and software 
state into consis-
tency Figure 10. conceptual model for constraint resolution system

Constraint Resolver 
The constraint solver in Pico is not a “solver” per se, in that it does 

not aim to satisfy all constraints present in the system at all times. Its 

main purpose is to pursue consistency between the internal state of 

the optimizer and the state of the user interface.

Its model for doing this is conceptually similar to figure 10. Each 

parameter consists of a pair of values: the optimizer’s current value 

of the parameter, and the interface’s current value of the param-
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eter. The optimizer’s current value is projected graphically on the interac-

tion surface, while the interface’s current value is embodied by the position 

of the puck. Connecting those parameters is a “computational spring” that 

continually tries to make the two parameters equal. It does this by itera-

tively computing the average between the two points, and trying to move 

the two points a bit closer to this average each time. The farther away the 

two points are from each other, the harder it tries to bring them together. 

This constraint model in Pico replaces the “binding” model in Sensetable. In 

Sensetable, the graphical representation of data can be “bound” to a particu-

lar puck, in which case it moves wherever the puck moves until it is un-

bound. Pico also tries to keep the puck and the graphical representations in 

the same place, but does so in a more elastic manner.

This functionality is implemented on top of a general purpose constraint 

engine written in Python. Each type of constraint inherits from a general 

purpose constraint class, and must implement a method which takes the posi-

tions of the object affected by the constraint and determines if the constraint 

is satisfied. If the constraint is not satisfied, the method returns a set of adjust-

ments to the current object positions that would satisfy the constraint.

The constraint solver treats constraints that have been violated for a long pe-

riod of time differently than those that have been broken only briefly. Initial-

ly I had planned to develop code specifically to support this functionality, but 

the magnet duty cycle monitoring software indirectly accomplishes this task. 

If the system tries to move a puck for more than 30 seconds (less in some 

cases) without being successful, the magnet monitoring software will tem-

porarily shift them to a lower duty cycle, reducing the pull on the puck in 

question. The result of this reduction is that if the constraint resolver cannot 

resolve an inconsistency by moving a puck and its digital association together 

toward their midpoint, it will subsequently try moving the digital association 

more than it moves the puck.
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To be usable, the Pico constraint resolver needed to produce results 

that were deterministic and continuous. While there may be a vari-

ety of possible solutions to a given constraint problem, the iterative 

nature of the software requires that similar solutions be given for 

similar inputs. Otherwise, one might observe pucks frantically mov-

ing around on the table in response to subtle changes in application 

state, making the system difficult to understand and interact with. 

This requirement was one of the reasons a new constraint engine 

had to be written from scratch, instead of using an existing one. 

Some existing constraint engines, such as Cassowary [Badros], can 

sometimes return non-continuous solutions for constraint problems 

with continuous input.



79

5 Interaction Techniques
The interaction techniques used in the Pico system were developed 

through a period of experimentation over several years with vari-

ous types of techniques for use of tabletop interfaces, both with 

and without actuation. While graphical user interfaces (GUIs) have 

a set of generally accepted interface building blocks, such as but-

tons, sliders, menus and windows, tangible user interfaces lack an 

analogous vocabulary. The development of generally applicable 

interaction techniques is an important step toward being able to 

use tabletop tangible interfaces as a general purpose tool for solving 

abstract problems.

Initially, the interaction techniques I developed centered on the 

ability to augment Sensetable pucks with additional interface hard-

ware, such as buttons, dials and interchangeable tokens. Over time, 

I moved to a more simplified system, in which all of the applica-

tion functionality was accessible by moving the pucks into differ-

ent positions relative to each other. One prime motivator for this 

change, as well as an example of its progression is the Audiopad 

system[Patten 2002]. Audiopad is a system for live musical perfor-

mance, a very demanding context for developing and testing a new 

interface. In this context, it was difficult to quickly access function-

ality mapped to buttons in Audiopad, so I switched to an alternative 

method which did not use them, described below. This section first 

discusses techniques that are relevant with or without actuation, 

and then discusses techniques specifically relevant to interfaces that 

include actuation.
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Sensetable Techniques
Over several years I have developed a variety of tabletop TUI 

applications such as musical performance and business simulation 

using tabletop tangible interface platforms, such as RF tracking 

systems like the Sensetable[Patten 2001] and computer vision-based 

object tracking platforms. In the context of these applications, I 

have developed and evaluated a variety of interaction techniques 

which can be applied to other applications. These include tech-

niques for modifying continuous and discrete parameters, and 

navigating hierarchical datasets. With these techniques it has been 

possible to include features in tabletop TUI applications that previ-

ously seemed difficult to do.

The Applications 

The two primary applications in which I developed and tested these 

techniques were electronic music performance and business sup-

ply chain visualization. I developed each of these applications over 

several years, experimenting with new sensing technologies and 

interaction techniques along the way.

Figure 1: An electronic 
music performance ap-
plication called Audiopad. 
Audiopad was one of 
the applications used to 
develop and explore the 
techniques described in 
this section.
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The electronic music performance application, known as Audiopad 

[Patten 2002], is designed to combine the modularity of software 

synthesizers with the ability to expressively control multiple musical 

synthesis parameters at the same time. Another one of the project’s 

aims is to interact with electronic music in a tactile and visual 

manner, such that the audience in a performance can see how the 

music is actually being created, rather than just watching the per-

former interact with a laptop using a keyboard and mouse on stage. 

I was excited about exploring new TUI interaction techniques in 

the context of a musical application for two reasons. First, musi-

cal performance is a very demanding application from an interface 

perspective, particularly as far as timing is concerned. The quality of 

a performance depends in part on the ease of interaction with the 

interface. Second, musical applications often involve the manipula-

tion of many different parameters, both continuous and discrete, so 

there were many opportunities to explore interaction techniques 

for setting these parameters. During the process of its development 

Audiopad has been used in more than ten public musical perfor-

mances and three museum installations. During this process I have 

observed users with a variety of musical and computer skill levels 

interacting with it.

Figure 2: Creating a simulation 
model of a business supply chain 
in the SCVis application.
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The business supply chain application, known as SCVis1, allows users to create 

and simulate models of how businesses work, using a method known as sys-

tem dynamics simulation. The SCVis system uses a database called the Process 

Handbook [Malone 1999] to store a taxonomy of business processes, which 

one can browse to retrieve, edit and analyze existing simulation models of 

other businesses. One notable aspect of this application from the perspective of 

interaction design is the need to quickly and easily navigate and edit a complex 

hierarchical data structure. In addition, this application involves a variety of 

discrete and continuous parameters that the user must be able to modify. Dur-

ing the development of the SCVis application, people ranging from simulation 

experts to business managers used the system to visualize and analyze hypotheti-

cal supply chain problems.

Most of the techniques described here employ a relatively generic set of tracked 

objects on the table, or pucks. Usually there are between five and eight pucks 

that represent data, such as the different tracks in a musical composition, or fac-

tories and warehouses in a business. In addition, there is one modifier puck that 

is used to change the properties of other objects. This modifier puck always has 

a star shape as shown at the top-right corner of figure 2.

Hierarchical item browsing and selection 

In a graphical user interface, pie menus [Hopkins 1987] are useful for selecting 

items from sets of choices. We have explored a variety of related approaches for 

use in tabletop tangible interfaces for modifying the properties of pucks. The 

most common of these approaches is a two-handed, asymmetric approach in 

which the user’s non-dominant hand holds the puck to be modified, and the 

dominant hand holds the modifier puck. This approach is based on Guiard’s 

Kinematic Chain Model [Guiard 1987], which suggests that in asymmetric two-

handed tasks, one’s dominant hand acts in the frame of reference provided by 

the non-dominant hand. For example, when writing with a pen on a piece of 

1 SCVis was a collaboration between Mary-Murphy Hoye of Intel, Tom Malone and his re-
search group at MIT’s Center for Coordination Science, Jim Hines and his students at MIT’s 
Sloan School of Management, and Hiroshi Ishii and myself at the MIT Media Lab. 
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paper, right-handed people often orient the paper with their left hand, and 

this improves their performance in the writing task [Guiard 1987]. Figure 3 

shows the two-handed technique in use. 

In Audiopad this approach is used to select a musical sample from a set of 

samples. The samples are arranged into various groups, and those groups 

may be collected into larger groups and so on. When the user places the 

modifier puck close to an area marked with a small ‘+’, known as a hotspot, 

near the puck to be modified, the first level of choices spring out of the 

modifier puck. When the user moves the modifier puck over one of these 

items, any of its child items spring out, and so on, as shown in figure 3. A 

terminal node in this tree contains a colored square. Selecting one of these 

nodes by placing the modifier puck on top of it indicates the selection pro-

cess is finished, and the tree disappears. In the case of Audiopad, these ter-

minal nodes represent the actual musical samples, and selecting them causes 

a new sample to start playing. If the user wishes to cancel the selection of a 

new item from the tree, he or she can move the modifier puck away from 

the tree and the tree will disappear after a couple of seconds.

Figure 3: A two handed method for selecting items from a hierarchical menu.
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As this technique depends only on the relative positions of the mod-

ifier puck and the object it is modifying, one can also select items 

from the tree using one hand. This hand can move either puck 

alone to select items. In informal demonstrations or museum instal-

lation settings users almost always select items using one hand on the 

modifier puck, while in performance contexts, performers typically 

use both hands, though sometimes use only one hand when the 

other is occupied with another task. I believe this difference is due 

to the stricter timing requirements in the performance context, as 

well as the performers being more familiar with the interface.

One problem with the first version of this interaction technique 

was that the selection process gave no feedback about recently se-

lected items. In the context of Audiopad, similar sounding samples 

are located near each other in the selection tree. During a perfor-

mance one often wants to focus on a certain group of samples for 

awhile, and then move to another group. Without feedback from 

the interface about which items had been used recently, perform-

ers wasted time repeatedly searching for certain samples within 

the tree. To address this issue, I changed the interaction such that 

the location of the most recently selected item is displayed when 

the tree is first activated. While this greatly reduces the time spent 

searching for an item, it is still difficult to switch quickly between 

items that are located several levels deep in the tree because the user 

must repeatedly move the modifier puck between the hotspot and 

the item to be selected. For cases in which quick selection among 

a few items is needed, I developed a separate technique called 

floating menus which is discussed in the next section. A condi-

tion in which two handed interaction becomes important is when 

the tree extends off of the table while selecting an item several 

levels deep. In these cases, the user can simply move the base of 

the menu using the non-dominant hand to bring the entire tree 
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onto the table. Two user interfaces of note which have employed 

asymmetric two handed interaction are Toolglass[Bier 1993] and 

GraspDraw[Fitzmaurice 1996]. With the GUI-based Toolglass, one 

hand controls the mouse cursor, while the other hand positions a 

set of tools in the workspace. The GraspDraw system uses two 6 

degree-of-freedom trackers as a method of physically interacting 

with a drawing application. In his thesis, Fitzmaurice states that he 

originally focused on using asymmetric gestures to create objects 

such as circles. [Fitzmaurice 1996] He notes that the hands obscured 

portions of the circles, and thus any benefit achieved through the 

asymmetric use of hands was overcome by not being able to see the 

results of the interaction.[Fitzmaurice 1996]. I did not observe users 

having problems with occlusion of graphics during the selection 

of items using the tree, probably due to two differences between 

these applications and GraspDraw. First, GraspDraw, running on 

Figure 4: Navigation of a hierarchical filesystem. Each puck has a button 
which can be held down to drag the tree across the table.
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the ActiveDesk[Fitzmaurice], uses rear-projection. The Audiopad 

and SCVis projects rely on projection from above. If the user places 

his or her hand on the table on top of some graphical informa-

tion, the information shows up on top of the hand, though it will 

be somewhat distorted. Second, while navigating the tree the most 

important graphical elements, the children of the current node in 

the tree, are displayed in front of the modifier puck where they will 

not be occluded by the puck or the user’s hand. To further avoid 

occlusion, each series of choices in the tree is displayed within 120 

degrees of arc in front of the modifier, rather than completely sur-

rounding it.

Navigating deeper trees of data 
The technique described above works well for trees that are up to 

four levels deep. Beyond this point, it becomes cumbersome to 

use, because the interaction with the two pucks may take up a large 

amount of table area, and may be difficult to perform without acci-

dentally bumping other pucks on the table. A clutching mechanism 

works better in cases where a very deep tree is needed, for example 

in the navigation of the taxonomy of business processes in the SC-

Vis application, or when navigating a hierarchical file system.

This technique can be used with one or two hands. Each object 

used to navigate the tree has a button on top. When the button is 

not pressed, one can move the puck around the tree to select or 

browse information about various nodes in the tree. One can move 

the entire tree by holding down the button on the puck while 

moving it. In this way, one can navigate a large tree by clutching 

and unclutching the puck. When used with two pucks (one in each 

hand), one hand can move the tree while the other selects items 

from within it. With two pucks this technique can also be used to 

edit the arrangement of items in the tree. By holding down the 
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buttons on both pucks at the same time, one can ‘break off’ a part 

of the tree, and reattach it somewhere else. This technique might 

be useful to rearrange a collection of digital photos, for example.

One limitation of this tree browsing technique is that the display 

can become unreadable when a node in the tree has many chil-

dren. One approach I have explored for this problem is ‘fanning’ 

the tree out to use more space when the user is looking at a node 

with many children. This works well for up to about 20 chil-

Figure 5: Flipping the puck on its side to see a different representation of it’s digital data.

dren. For larger collections of data one might consider using magic 

lens[Bier 1993] based approaches, or more sophisticated tree display 

techniques.

Trees with different types of data 
A related challenge is navigating trees where each node has several 

types of subnodes. I developed a technique for navigating these trees 

when working on a business process browser for SCVis, in which 

each business process may have three types of child nodes:
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 • instances - Companies where the process is put into place. 

 • subclasses - Variations on the process. 

 • navigation nodes - Connections similar to hyperlinks. 

Depending on the task at hand the user is typically only interested 

in one of these types at a time. Other examples where an approach 

like this is relevant are a file browser, where one might want to 

occasionally see hidden files, or an object browser in a software 

development environment, where one might be interested only in 

specific kinds of items such as object methods, instances and sub-

classes.

Our approach to navigating this sort of dataset involves a puck in 

the shape of a cube or triangle that can be flipped onto its various 

sides. Each side can represent a different type of data to be dis-

played, while one side has a button to perform the clutching opera-

tions described above. When the user flips the puck, the graphical 

representation of the tree flips as well. The items that were being 

displayed disappear, and new ones appear in place, as shown in 

figure 5.

With the first version of this interaction technique, users under-

stood the notion of flipping the puck to see a different type of 

data, but they rarely used the technique when interacting with the 

SCVis system. While each node in this system technically could 

have any number of three different types of children, in practice 

most interaction focused on the ‘subclass’ type. At first users often 

tried flipping the puck several times, for example to look for ‘navi-

gation’ nodes, only to find none. After this initial exploration users 

often stopped flipping the puck because it was tedious to repeatedly 

do this during an otherwise rapid process of navigating the tree. A 

possible solution is to add graphical feedback around the puck to 
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indicate when the puck could be flipped to reveal extra nodes of a 

different type. This feedback might consist of a small colored area 

to one side of the puck. The side would indicate which way the 

puck should be flipped to reveal the nodes, the color might indicate 

the type of nodes, and the size could represent an estimate of the 

number of nodes.

Two notable examples of flipping physical objects in the context 

of a user interface are the Flipbrick [Fitzmaurice 1995] and the 

Toolstone [Rekimoto 2000]. Both objects are cordless devices with 

six faces tracked by Wacom tablets. The Flipbrick can be used in a 

graspable interface to select items from a menu. The Toolstone is 

designed for use with a GUI in a user’s non-dominant hand. The 

position of the Toolstone can switch between tools that are used by 

the dominant hand, or modify actions performed by it.

The technique using the Sensetable described above is used to see a 

different view of data, rather than to select actions, as with Flipbrick 

and Toolstone. Just as one might flip an everyday physical object to 

see it from a different perspective, it makes sense to flip a physical 

representation of computational data to see a different perspective 

on the data itself. Software reinforces this metaphor by graphically 

flipping the data in the same way the user flips the physical puck.



90

Floating menus 
As discussed above, users of Audiopad in performance found it 

tedious to repeatedly select samples from several levels deep within 

the sample tree. To address this issue, I developed a floating menu 

that can follow objects around as they move on the table. The 

menu is shown in figure 6. To select an item from the menu, one 

simply moves the object on top of the desired selection. In the con-

text of Audiopad, these menu items represent audio samples that are 

related to the sample currently being played. As the user moves the 

object around the table, the menu follows it, so that the user can 

easily select something from the menu with a quick gesture.

The important design issue in this interaction is when the menu 

should move, and when it should be stationary. If the menu moves 

too much, it can be difficult to select something from it, while if 

it moves too little, it will usually be far from the object it corre-

sponds to. To determine when the menu should move and when 

it should be still, I define an area surrounding the icons called the 

selection area, as shown in figure 7. When the puck is inside of this 

area, the menu stays still to make selection easier. If the puck moves 

outside of this area for more than 3 seconds, the menu recenters 

around the puck, such that the currently selected choice from the 

menu is underneath the puck. When the puck moves, the menu 

lags behind it slightly. This gives the user freedom of movement in 

case he or she would like to move a puck to a specific area on the 

table without accidentally selecting an item from the menu. In the 

original version of this technique, the menu would move toward 

the puck whenever the puck left the selection area surrounding the 

icons. This approach sometimes caused problems, because a user 

would accidentally move the puck outside of this area while trying 

to select a menu item.
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Figure 6: Floating menus in the Audiopad application. One selects an item from 
the menu by placing the puck on top of it. When the user moves the puck away 
from the menu, the menu follows it.

The floating menu presents a 
list of choices to the user.

The user selects one by moving 
the puck along the arc.

The user can move the puck 
anywhere else once the desired 
item is selected.

After a brief time delay, the 
floating menu moves back 
under the puck.



92

This would cause the desired menu item to move, making it diffi-

cult to select. I experimented with increasing the size of the selec-

tion area to make menu selection easier, but this caused the menus 

not to follow the pucks when users thought they should because 

the puck was still inside of the selection zone. The time-based ap-

proach works well because users can stray outside of the selection 

zone when moving the puck toward an item in the menu with-

out having the menu move in response. This time-based toler-

ance means that the selection zone around the icons can be small, 

ensuring that the menu will follow the puck as the user moves the 

puck around on the table.

Another issue with the design of this technique was how the 

menu should recenter around the puck. In the initial design, the 

menu recentered by moving toward the puck until the puck was 

once again in the selection zone. This approach occasionally led to 

items in the menu being inadvertently selected after the menu had 

recentered itself several times. Recentering the menu by moving 

the currently selected menu item underneath the puck resolves 

this problem.

Figure 7: The selection area around a floating menu. When the puck is in this 
area, the menu will not move.

menu item 1

menu item 2
menu item 3 menu item 5

puck

movement area

menu selection area
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Changing Continuous Parameters 
Many applications involve the manipulation of continuous param-

eters. For example in Audiopad, each audio track has a volume 

parameter. One early approach to this problem was to rotate pucks 

on the table to change their volume. Graphical feedback, in the 

form of an arrow and a bar graph were displayed beside the puck 

to indicate the current setting. I avoided using a physical dial as 

was used with the Sensetable system [Patten 2001] because this 

approach must deal with what Buxton calls the ‘nulling problem’ 

[Buxton 1986]: a condition resulting when the physical state of a 

dial and its computational state are inconsistent. There were sev-

eral problems with this approach to parameter control. First was a 

tradeoff between precision and speed when adjusting a parameter. 

The software could be configured such that several revolutions of 

the puck were needed to fully traverse the range of possible pa-

rameters. In this case it was possible to set the puck to a value with 

several digits of precision, but it took a lot of rotating to reach a de-

sired value. Alternatively, with the entire parameter space accessible 

in one revolution of the puck (or less), parameter changes could be 

made quickly but it was difficult to make them precisely. Another 

issue with this approach was that it was difficult to change multiple 

parameters at the same time. Any more than two parameters was 

essentially impossible with two hands.

A more subtle issue was that when a user would rotate a puck, 

their hand often obscured it from the view of others. This made it 

difficult for others to observe the manipulation being performed 

and understand its effect in the context of the application. In the 

context of Audiopad, this was a concern because we wanted the 

audience of a musical performance to see the causal relationships 

between the performers actions and the music they were hearing. 
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Figure 8: In Audiopad, the distance between the microphone (top puck) and an 
audio track (bottom puck) determines the current volume of that track. The size 
of the colored arc in the photos represents the current volume of the track it sur-
rounds.

Figure 9: Using the microphone to adjust the volume of many tracks at one time, 
as one might do when transitioning between songs. The user is moving one audio 
track with his thumb to keep its volume constant while he adjusts the volume of the 
other tracks. The blue circle underneath the user’s index finger is the microphone.
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I believe this difficulty in seeing causal relationships could be of 

concern in face-to-face collaborative applications as well, where the 

TUI becomes a shared medium for expressing ideas.

Based on these observations I developed a technique that allows 

one to manipulate multiple parameters simultaneously with coarse 

motor movements. The value of the parameter is determined by 

the distance between the puck and another master puck. In the 

Audiopad application, this technique is used to control the volume 

of all of the tracks. The distance between each track and a special 

puck, called the microphone, determines all of the volumes: tracks 

that are closer to the microphone are louder than those that are 

farther away. To change the volume of a particular track, one sim-

ply moves it closer or farther away from the microphone as shown 

in figure 8. One can grab several tracks with each hand and move 

them simultaneously, or move the microphone itself to change 

the volume of all tracks together. If the user wants to change the 

volume of most tracks while leaving a few of the volumes constant, 

he or she can move the microphone with one hand, while moving 

the other tracks with the other hand, so as to maintain a constant 

distance between them and the microphone. (figure 9) 

0

1
parameter

value

distance between pucks (cm)
0 8 27

Figure 10: The volume parameter as a function of distance from the microphone puck.
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One detail important for making this technique work well is the 

function mapping distance to the parameter being controlled. After 

some experimentation in the context of Audiopad we arrived at 

a transfer function shown in figure 10. Within the range of 8 cm. 

of the microphone, the volume is at its maximum level. From 

this point the volume decreases linearly until a distance of 27 cm, 

where the volume reaches zero. This mapping means that there are 

always some areas of the table where the movement of a puck has 

no effect on it’s volume. For parameters that are changed infre-

quently, one might want to use a mapping in which the active area 

was smaller. This would give the user maximum flexibility in how 

objects in the rest of the space were organized.

Arcs
Another method for changing one-dimensional continuous param-

eters is with the use of a “parameter arc” around the correspond-

ing puck, as shown in figure 11. To change this parameter, one 

simply moves the modifier puck over the parameter, and moves it 

in the desired direction. The arc is constrained to only move along 

a circle of fixed radius with the puck at its center, so deviating too 

far from this path with the modifier puck will cause the parameter 

to stop changing. So, when one wants to stop changing a particular 

parameter one simply slides the puck away, perpendicular to the 

arc. This method can be used with multiple parameters per puck, 

each rotating around a circle of a different diameter with the puck 

at the center.

Setting two dimensional parameters 
While the technique above works well for controlling a one-di-

mensional parameter such as volume, there is no clear way to apply 

it to a two dimensional continuous parameter. In the context of 

Audiopad, we explored two techniques for modifying two dimen-
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sional continuous parameters. Users employed these techniques 

to change digital effect parameters on a track-by-track basis, for 

example the high frequency and low frequency cutoff of an audio 

filter.

The first technique was the use of effect “zones” on the table 

where the two dimensional motion of the puck controlled the two 

parameters. In this case, the absolute position of a puck in the ef-

fect zone determined the value of the parameter. Figure 12 shows 

a picture of this technique. With this approach, the direct mapping 

of a particular point on the table to a particular setting of effects 

parameters reduced flexibility in terms of where pucks could be on 

Figure 11: Using the selector puck to modify a parameter 
arc in the cellphone tower layout application.
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the table. This rigidity made it difficult for users to arrange objects 

in other ways, for example to line tracks up in a row according to 

the order in which they were to be played. Second, this interac-

tion technique did not give feedback about how the parameters 

were changed over time. If a musician wanted to gradually change a 

parameter a certain amount, the interface made it difficult to know 

when that change was complete. To address these issues we ex-

plored a technique for making relative adjustments to two-dimen-

sional parameters. The user places the modifier puck on a hotspot 

toward the bottom of the puck. Then, the two-dimensional mo-

tions of the modifier puck control the two-dimensional parameter 

setting. Graphical feedback shows how the setting has changed 

since the modification started, as well as the current absolute set-

ting of the parameter, as shown in figure 13. One can move either 

puck to change the parameter. What matters is their relative posi-

tion. If the parameter has a bounded range of possible input values, 

the graphical feedback indicates this as shown in right picture of 

figure 13. The colored area stops following the modifier puck, and 

Figure 12: An early method of controlling audio effect parameters in Audiopad using 
“effect zones” where effect settings corresponded to absolute positions on the table.
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remains at the edge of the area of valid input. A red line indicates that the modifier 

puck has moved past the limit of the parameter setting. Once the user has set the 

parameter to the desired value, he or she can lift the modifier puck off of the table to 

deactivate the parameter modification mode.

Navigation
A common requirement in spatial applications is the ability to navigate within a spa-

tial reference frame. For this task, I use two pucks, without buttons or other func-

tionality, together to pan and zoom a map. The two objects are shown in figure 14. 

The first is the same star-shaped “modifier” puck used in other contexts, while the 

other has two slots in which the modifier can fit. One of these slots is for panning the 

map, while the other is for zooming. When one wants to move the map, one slides 

these two pucks together, as in figure 14, “pinching” the map with the two objects. 

As long as these two objects are touching in this configuration, the map will move 

along with the pucks as they are moved together across the table. This action can be 

quickly and easily repeated with a single hand to travel a larger distance. Alternative-

ly, one can zoom out, move to the desired map location, and then zoom back in.

Figure 13: Using the modifier puck to change the effect parameters of an audio track. 
Here the effect setting is determined by the relative position of the two pucks. In the 
right picture, the user has exceed the bounds of the parameter, so the red colored area 
stops following the modifier puck.
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Figure 14: Moving a map using a pinching gesture

The selector puck and navigator 
puck are used to perform the move.

When the user brings them together as 
shown to the left, they “grab” the posi-
tion on the map directly underneath.

The user can then move the map 
freely around the interaction surface, 
and spread the pucks apart when the 
desired position is achieved. Larger 
movements can be performed by 
repeating this gesture, or zooming out 
before moving. (see next page)
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Figure 15: Zooming the map using a stretching gesture.

Zooming the map is also performed with 
the navigator puck and the selector puck.

The user brings the two pucks together so 
the star-shaped selector puck is touching 
the convex side of the navigator puck. This 
causes the zoom bar to appear.

The user moves the selector puck to the 
handle at the end of the zoom bar to 
change the zoom.

The user can now move the selector 
puck along the zoom bar to stretch or 
shrink the map. Once the desired zoom 
has been achieved, one simply moves 
the selector puck off of the zoom bar, 
and it disappears.
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Zooming is performed using a slot on the other side of the naviga-

tion puck. Touching the two pucks together, as shown in figure 15, 

enables a “zoom bar” that one can slide closer to the navigation puck 

to zoom out, or farther away from the navigation puck to zoom 

in. During the zooming process, the map is constantly rescaled so 

that points on the map that are underneath one of the pucks remain 

so until the zooming operation is complete. Here the metaphor is 

that one is “stretching” the map with both hands. A similar meta-

phor was used in the “Metadesk” [Ullmer 1997] project by Hiroshi 

Ishii and Brygg Ullmer. However the Metadesk did not include the 

clutching and mode-switching functionality described here.

Design Principles 
The lessons learned while creating and testing applications in musical 

performance and business simulation suggest three design principles 

for use with tabletop tangible interfaces.

Interactions should be legible for observers 

An important issue to consider in the design of these systems is the 

legibility of the interaction from the perspective of an observer. 

I first observed the importance of this principle when testing the 

Audiopad in a performance situation. The initial iteration of the 

system used the rotation of objects on the table to control the vol-

umes of individual tracks. One of the limitations of this approach 

was that observers could not easily tell that a performer was rotating 

an object on the table because the performer’s hand usually obscured 

the object. One of the reasons that linear movements of the objects 

on the table worked better for changing parameters was that audi-

ence members could see them more easily. They could observe the 

correlation in time between certain motions on the table, and cor-

responding changes in the sound produced by Audiopad, and thus 

begin to understand what the performers were doing.
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The idea of legibility of interaction from the perspective of an 

observer is relevant for systems involving collocated collaboration as 

well. For example, in case where multiple users are interacting with 

a simulation, such as a business supply chain or computer network 

simulation, this work suggests that observers would more quickly 

understand the causal relationships present in the simulation if rotat-

ing gestures to change simulation parameters were replaced with 

linear movements of pucks on the table. 

Show possible interactions between objects

The use of a mouse in a GUI is typically based on a one-to-many 

relationship of tool (mouse pointer) to targets (buttons, menus, 

sliders etc.) In contrast, a tabletop TUI usually has a many-to-many 

relationship of pucks to targets (other pucks, graphical hotspots on 

the table). This many-to-many relationship means that an interface 

must convey more information about what interactions are valid 

between pucks. One approach to this need is using animation when 

there is a possible interaction between two pucks that are close to 

each other, as shown in figures 16 and 17.

Relative versus absolute mappings 

Two possibilities for setting continuous parameters in a tabletop 

tangible interface are to use a relative mapping based on the posi-

tions of other pucks, or an absolute mapping based on a puck’s 

position on the table itself. In application domains such as urban 

planning [15], an obvious mapping exists between the positions of 

buildings on the table and hypothetical buildings in the real world. 

In these types of applications, a direct spatial mapping of physical 

objects in the interface to a hypothetical urban site makes it easy for 

a user to understand and participate in the interaction. However, 

many applications have no such obvious direct spatial mapping. 

Using spatial mappings based on objects’ positions relative to each 
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Figure 16: Arrows from two pucks on the table point to each other, indicating 
that these objects can be connected.

Figure 17: The grey circle underneath the star-shaped modifier puck points to 
the hotspot above the puck in the user’s left hand, indicating that this object 
can be modified.
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other seems to work better in these cases. For example, the technique 

shown in figure 13 worked better than that shown in figure 12. Re-

search by Kirsh [Kirsh 1995] illustrates a variety of ways that people can 

use physical objects to offload computation from their brains to their en-

vironments. The use of absolute mappings in a tabletop TUI can prevent 

the user from moving the pucks on the table to employ these types of 

techniques. Relative mappings can also better afford multiuser collabora-

tion, as users standing around the tabletop interaction surface can define 

their own reference frame within the context of their body by orienting 

their pucks appropriately. For many applications, it seems better to leave 

some degrees of freedom open to interpretation by the user.

Interaction Techniques for Actuated Interfaces
While the interaction techniques described above are applicable to 

tabletop interfaces with actuation, there is another group of techniques 

that are specifically designed for interfaces incorporating actuation. One 

of the primary goals of incorporating actuation in Pico is to make pucks 

in the interface behave more like objects in the everyday world, so that 

many of the “interaction techniques” we use with everyday things (such 

as putting a paperweight on top of a stack of papers to keep any of them 

from moving) can have an intuitive and easily discoverable analog in the 

interface.

The pucks used with Pico can be bound to the positions of objects pro-

jected on the interaction surface, and positions of these graphical objects 

in turn represent some parameters in what is at its most abstract level a 

complicated math problem. By translating the mathematical “forces” on 

these parameters into physical forces, the system creates the illusion that 

the parameters are attracted to a better solution, as if by gravity. Other 

interactions happen in the context of this constant force that tries to pull 

the complex system of variables toward the best solution it can find.
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Within that context, users can guide, constrain and move objects 

(thus changing parameters) using a rich physical vocabulary. The 

richness of this physical vocabulary comes from the fact that of 

the assumptions we make about how everyday objects behave are 

still valid here. Here I present some interactions that are possible 

within that space.

Objects can be kept very close together using a rubber band, as 

shown in figure 18. Alternatively, if one prefers a larger maxi-

mum distance between objects, one can use a larger mechanism 

such as that shown in figure 19. A minimum distance constraint 

can be established using collar around one or more pucks, as 

shown in figure 20. 

Figure 18: A rubber band used as a mechanical constraint to keep two 
pucks in close physical proximity.
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Figure 19: An oval-shaped ring used to keep two pucks 
within a given minimum distance to each other. 

Figure 20: A collar used to enforce a minimum distance constraint.



108

Collars with different elevations can be used, so that different puck 

combinations are mechanically constrained to different minimum 

distances, as in figure 21. These distance constraints can also be 

combined to establish a minimum and maximum at the same time, 

shown in figure 22.

Figure 22: Minimum and maximum distance constraints can be combined. 

Figure 21. Collars at differing heights can yield different minimum dis-
tance constraints for different combinations of pucks.



109

Physical barriers can be used to constrain puck motion in a variety of ways. For ex-

ample, if one wants to keep an object in its current position, one can simply hold it 

in place with one’s hand (figure 23), or place some sort of weight on top of it (figure 

24), or fix it in place with tape. To keep an object or objects inside of or outside of 

a given area, one can use a flexible curve such as the one shown in figure 25. One 

could place the pucks on small pads with different types of bottom materials, such as 

Teflon or sandpaper, to make it easier to move some parameters than others, chang-

ing the “weight” of these parameters within the mathematical optimization. 

Figure 24: The object placed on top of the puck is filled with sand, preventing the computer from 
moving the puck autonomously.

Figure 23: A temporary mechanical constraint of one 
puck’s motion established by the user’s hand. 
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While the set of constraints above illustrate some of what is pos-

sible with mechanical constraints on actuated surfaces, it is not 

intended as an exhaustive list. One of the goals of this work is 

that users will be able to improvise new mechanical constraints to 

meet their needs, because these constraints build on users’ existing 

knowledge of the world. Because users can see and understand the 

causal relationships between the pucks and constraints on the table, 

a constraint need not perfectly describe the desired computational 

behavior perfectly, because users can easily change or override them 

if necessary. They serve as short term, ad hoc “jigs” to make the 

problem solving process easier.

Figure 25: A barrier limiting the motion of pucks on the table. 
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Sound feedback
The electromagnets used by Pico are mounted on strips of stainless 

steel, which moves slightly when the magnets are electrified as a 

result of the magnetic field. While I was building Pico, I calibrated 

the control loop on the Pico embedded microcontroller so that 

while the magnets were being driven, the vibration of the steel 

beams would occur in the audible range. This sound proved to be 

a useful debugging tool, in the same way that sounds from a car’s 

engine can help a mechanic determine its health. Once the con-

struction of Pico was complete, I placed a microphone near the 

electromagnets to amplify this same sound. This audio is processed 

using audio software called Pure Data [Puckette 2001] and played 

over speakers near the table. The audio provides an added channel 

of feedback about how the computer is responding to the user’s 

actions. This can be helpful, for example, in cases where one is 

watching another user move objects, and the computer is resist-

ing the movements. The audio can help onlookers understand at 

which points the computer is resisting the user’s motions, without 

touching the table. 

Figure 26: A contact microphone attached to the bottom of the interaction 
surface to detect the vibrations caused by moving pucks and magnets.
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6 Evaluation
Pico differs from most graphical user interfaces in two fundamental 

ways: First, objects inside the software are represented and con-

trolled by pucks on a tabletop, rather than with graphical icons and 

a pointing device. Second, Pico uses actuation to represent math-

ematical “forces” inside an optimization using mechanical forces 

on the table. To explore these differences I conducted a two-part 

experimental evaluation asking the following questions:

1 Are tabletop interfaces based on tracked physical objects any bet-

ter than touch screens for object manipulation tasks? 

2 Does actuation in a tabletop tangible interface like Pico help users 

solve complex problems?

Object Manipulation on Horizontal Interactive Surfaces
In this first experiment I compared performance times for a simple 

object manipulation task performed on a horizontal surface with 

video projection. In task A, users moved graphical objects with 

their hands on a touchscreen. In task B, users moved graphical 

objects on the tabletop using a tracked object held in the hand. In 

task C, users move four physical objects (one at a time) which are 

bound to projected graphical objects. While typical graphical and 

tangible interfaces differ in a variety of ways, in this experiment I 

chose to focus on the use of multiple physical controllers and com-

pare that to the use of a single input device.
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Task
Subjects were seated in front of a desk with a video projector 

mounted above it, pointing down onto the desk. Using two different 

types of sensing apparatus, subject performed three different tasks on 

the tabletop in front of them. The three tasks are described below.

Touchscreen task

Subjects were presented with a colored 

circle, graphically projected on the tabletop. 

Subjects were asked to drag this circle using 

a touchscreen to another, smaller circle lo-

cated at a random location on the tabletop. 

A graphically projected straight line con-

nected the two points. As soon as this task 

was completed, the user would immediately 

be presented with another instance of the 

same task.

One puck task

This task is similar to the touchscreen task, 

in that subjects were to drag a circle to des-

ignated a location on the table. However, 

instead of using a finger for this task, sub-

jects were given a cylindrical object made of 

translucent acrylic measuring approximately 

1 cm in height and 3 cm in diameter. The 

puck was embedded with an LC tag that 

allowed it to be tracked inductively using an 

antenna placed on the tabletop. 

The touchscreen task: 
The user’s finger is 
directly touching a 
glass sensing surface

The one puck task: 
The user moves a 
Sensetable puck with 
his hand, using it as 
a pointing device
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Four pucks task

Four pucks, identical to that used in the one 

puck task, were placed on a tracking surface 

in front of the subject. A randomly selected 

one of these pucks is then highlighted, and 

a line is drawn a location where it must be 

moved. As soon as the user accomplishes 

this, another puck is highlighted to perform 

another iteration of the task. The next puck 

highlighted is always different from the one 

the user just moved. 

In each of these tasks, the user must first acquire an object with 

his or her hand, and then move it to a specified target. The dif-

ference between the experimental tasks lies in how the objects are 

acquired. In the touchscreen task, the user must touch the graphi-

cal object with his or her finger. While the user can feel when he 

or she touches the screen, the user must rely on visual confirma-

tion, in the form of graphics displayed by the projector, to be sure 

that the object has been successfully acquired. In the One Puck 

task, the user still receives some useful tactile feedback from the 

object in his or her hand, but must rely on graphical feedback for 

confirmation that an object has been successfully acquired. In the 

Four Puck task, the graphical objects to be moved are perma-

nently associated with physical objects on the table. In this case, 

the user can rely purely on tactile feedback from his or her hand  

to know that the object has been successfully acquired. 

The four pucks task: 
The user moves one 
of four Sensetable 
pucks to the target
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Experimental Hypotheses
H1 Subjects will complete the Four Pucks task faster than the other 

two.

The tactile feedback provided by the physical objects in the Four 

Pucks task should allow the user to begin moving the target toward 

its destination without waiting for visual confirmation that the ob-

ject has been successfully acquired. In the other two cases, having to 

rely in graphical feedback will delay the user. 

H2 The acquisition time in the Four Pucks task will be smaller than 

in the other two tasks

By acquisition time I mean the time between when the task is 

displayed to the user and when the user begins moving the target 

toward its destination. Even though the target diameter in all exper-

imental conditions is the same, I expect the two-dimensionality and 

lack of haptic feedback during target acquisition will require more 

fine motor control in the One Puck and Touchscreen tasks than in 

the Four Pucks task, forcing the user to perform it more slowly.

H3 There will be no statistically significant difference between over-

all performance times for the Touchscreen task and the One puck 

task

In both of these tasks the user must rely on graphical feedback to 

know that an object has been successfully acquired. While there may 

be some difference in average times for these tasks, perhaps in part 

due to differences in friction between the RF tracking surface and 

the touchscreen, I do not expect the difference to be significant.
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H4 If one compensates for acquisition time, there will be no statisti-

cally significant difference between the three tasks. 

Once the object has been acquired, all three tasks are quite similar, 

so I do not expect to see significant differences in performance times 

when acquisition time is subtracted from total task performance time. 

Subjects
Twelve subjects were recruited using flyers posted around the uni-

versity campus. Each subject completed all three conditions of the 

experiment. The order in which subjects completed the three condi-

tions was varied such that each of the six possible orderings was expe-

rienced by two subjects. 

Experimental Procedure and Design
The One Puck and Four Puck tasks were performed with a custom 

built sensing system using a matrix of antenna elements to inductively 

track the position of analog LC tags embedded in the objects on top 

of it. The antenna was embedded in a wooden case and covered with 

a white, high pressure laminate sheet similar to what one might find 

on a kitchen countertop. 

The Touchscreen task was performed using a NextWindow 2401 

touchscreen. [NextWindow] This system tracks finger positions using 

two cameras located directly above a glass pane inside a metal frame. 

This system can only reliably track one point of contact at a time. 

For each task, subjects were asked to perform a training block of 50 

iterations of the task. They were told that this block was just for prac-

tice. After this block of 50 trials, subjects were asked if the under-

stood the task, and any questions were answered. Then subjects were 

given another block of 50 tasks, and were asked to complete the 

group of tasks as quickly as possible. Subjects were given an oppor-
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tunity to rest, and were then asked to complete another block of 50 tasks, 

which was also timed. The times from these fi nal 100 trials for each task 

were analyzed. Raw sensor data from the touchscreen and antenna array 

were collected with custom software for further analysis.

Limitations
This experiment does not deal with cases where users move multiple ob-

jects to multiple targets at the same time. We omitted this case for lack of 

a touchscreen interface of suffi cient size that could reliably track multiple 

points of contact from the same person.

Results
We performed a two factor ANOVA (task x subject) on the average task 

performance times and found that users were able to perform the four 

puck task faster than the one puck and Touchscreen tasks, as shown in 

fi gure 4. The difference between the four puck and one puck conditions 

was found to be signifi cant (p < 0.05). The difference between the four 

puck and touchscreen conditions was also signifi cant (p < 0.05). However, 

the difference between the touchscreen and one puck conditions was not 

found to be signifi cant (p = 0.59). 

Figure 4: Task performance time in 
seconds for the three experimental 
conditions. Mean and standard 
deviation are shown.

60.162.2
53.3



119

By analyzing the data log generated by software as each condition 

was running, we determined the time delay between when the 

subject was presented with each task, and when he or she began 

moving the object to complete the task. We performed a one-way 

ANOVA on this data and found that subjects were able to acquire 

objects more quickly in the four pucks task than in the one puck 

task and the touchscreen task. The difference between the four and 

one puck tasks was signifi cant (p < 0.001) as was the difference 

between the four pucks and touchscreen tasks (p < 0.001). Acquisi-

tion times for the one puck task were also signifi cantly faster than 

for the touchscreen task (p < 0.001). This result was surprising, as 

both tasks require the user to rely on graphical feedback to know 

when an object has been successfully acquired. 

0.69
0.73

0.80

Figure 5: Object acquisition time in 
seconds for the three experimental 
conditions. Mean and standard de-
viation are shown.
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Multiplying the average acquisition time in each experimental 

condition times the number of movement tasks per trial (50) re-

veals that faster acquisition of the objects in the four puck case only 

accounts for 4.5 seconds of the overall difference in performance 

time. In the interest of learning what was causing the rest of the 

performance difference, I analyzed the velocity data of the object 

in each condition during the period when it was moving to the 

target. The objects in the four puck condition have a much higher 

velocity at the beginning of their path than in the other conditions. 

Figure 6 shows the average speed of the objects in each condition 

0.2 seconds after the user has begun moving it. The speed of the 

object in the four pucks condition is signifi cantly higher than in 

the one puck (p < 0.001) and touchscreen conditions (p < 0.001). 

There was no signifi cant difference between the one puck and 

touchscreen conditions (p = 0.71).

Figure 6: Speed of object (mm/s) 0.2 seconds after 
user has begun moving it. Mean and standard error 
are shown.

753

202 206
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User Comments
Two subjects commented that it was difficult to move one’s finger 

around on the touchscreen surface. However, these same two sub-

jects also discovered during the practice period of the experiment 

that by using their fingernail, or a different portion of their finger, 

they could move their finger on the screen with greater ease. While 

the friction of the touchscreen was greater than that of the laminate 

surface users touched in the other two experimental conditions, we 

do not believe this factor influenced our primary results in a signifi-

cant way, as there was no overall significant difference found in the 

completion times for the Touchscreen task and the One Puck task.

Three subjects noted that in the Four Puck task, other objects often 

served as obstructions along the path of the object to be moved. 

The most common strategy used in response to this was to move 

the puck along a curved path, though some users also experimented 

with lifting the puck up off of the surface and placing it down onto 

the target. One subject tried sliding pucks along the surface of the 

table from one hand to the other but abandoned this technique 

after a few attempts. Finally, one subject moved pucks with his 

dominant hand while placing his non-dominant hand just past the 

target, so that he could rapidly approach the target without over-

shooting it. 

Discussion
The experimental data supports hypotheses H1, H2 and H3. Sub-

jects complete the task more quickly in the four puck condition, 

and acquire the objects to be moved more rapidly in that condi-

tion as well. One unexpected finding is that subjects also acquire 

the objects to be moved more quickly in the one puck condition 

than the touchscreen condition. One possible explanation for this 

difference in performance is the tendency of many users to slide 
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the puck along the sensing surface rather than pick it up and put it 

down again. This sliding causes users to approach the target with a 

horizontal motion rather than a vertical one. The horizontal mo-

tion may make it easier to recover quickly if the original attempt 

to acquire the puck fails and must be repeated. In contrast, many 

subjects used a stabbing gesture to acquire an object in the touch-

screen condition, which may require more time to recover if the 

initial attempt fails, due to the increased friction with the glass pane 

due to the momentum of the finger. 

Once subjects had acquired the object to be moved, they were 

faster to move it in the four pucks condition than in the other two, 

disproving hypothesis H4. It appears this speed advantage comes 

from the fact that one can combine the acts of grasping and moving 

the puck into one continuous sweeping gesture. As subject’s hands 

often do not fully stop when acquiring an object in the four pucks 

condition, the initial speed of travel toward the target is higher. 

This is an additional advantage in terms of overall performance 

time in the four pucks condition. 

The results suggest that in applications where users must manipulate 

a variety of different objects and must switch between manipulat-

ing different graphical objects frequently, users would be better off 

having physical objects directly mapped to those graphical objects. 

However, as the number of objects increased, at some point the 

physical objects on the table would probably become a hindrance 

more than a help. 

In pilot experiments, we informally observed that as the number 

of objects on the table increased, the performance in the Multiple 

Pucks condition degraded. We believe this is because with increas-

ing numbers of pucks, grasping the correct one out of a crowded 

group on the table becomes more of a fine motor task than a coarse 
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one. As well, the need to avoid many objects during the move-

ment process also adds a fine grained motor control element to the 

movement task. 

The results suggest that latency in interactive systems similar to the 

Multiple Pucks condition of our experiment is less of an issue than 

in interfaces based on Touchscreens. In applications where physi-

cal objects are bound to graphical content, passive haptic feedback 

from the physical objects can help users interact more quickly.
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Evaluation of Actuation in Pico
I this second experiment, evaluated Pico using a simplified version 

of the cellphone tower layout application discussed earlier in this 

thesis. The aim was to understand how mechanical actuation would 

affect the users’ problem solving strategies, and how users would 

react to an interface involving actuation. 15 subjects were asked 

to use the interface to lay out a group of four cellular telephone 

towers to maximize a “coverage score” displayed on the screen or 

table. With each different interface, subjects were given a chance 

to try the interface and ask any questions they had before the 

timed portion of the interaction. Because I wanted to understand 

how subjects would interact with the systems when the underly-

ing mathematics were opaque, they were not given an explanation 

of how cellular radio propagation works. They were simply asked 

to position the towers to try to reach a coverage score of 400, and 

given 4 minutes and 30 seconds to complete the task. To focus the 

users on the task of positioning the towers in space, the manipula-

tion of other tower parameters normally available with Pico was 

disabled. I chose the task of cellphone tower layout for this evalua-

tion because it was mathematically complex enough to benefit from 

computer augmentation, yet the goal of the task was conceptually 

simple enough to be understood by a novice user.

The experiment had three conditions: Pico, Pico without actua-

tion, and Screen. 

Screen: Subjects used a three button mouse to move the towers. 

The user could click on a tower with the left mouse button and 

drag it to a desired position, and could right click on the tower 

to lock it in place. With the middle mouse button, subjects could 

draw a line on the screen that towers could not cross. These middle 

and right mouse button features were added to ensure feature par-
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ity with the other experiment conditions. The software running 

the screen-based condition was identical to that in the other two 

conditions, save a small change to the tracking code to track mouse 

clicks instead of Pico pucks. As in the other conditions, the com-

puter used a simulated annealing process to attempt to maximize 

the coverage score on its own by moving the towers. 

Pico: The experimental task was performed with four Pico pucks, 

each associated with a cellphone tower. In addition, subjects were 

provided with a flexible barrier and three hollow discs filled with 

sand. The experimenter explained that a disc could be placed on 

top of an object to stop it from moving, and the barrier could be 

bent into any shape to constrain the motion of the pucks. 

Pico without actuation: This case was the same as the Pico 

condition, except that the power supply to the magnet array was 

turned off, preventing the Pico software from moving any pucks 

on its own. 

Three conditions were used in order to separate the effects of being 

able to use two hands at the same time and interact directly with 

physical objects, and the effects of using actuation. The 15 subjects 

ranged from 19 to 55 years old (median 33) and consisted of 5 

females and 10 males. The order of presentation of the conditions 

was randomized to counteract ordering effects. After subjects had 

used all three interfaces, they were asked to rate each interface on a 

7-point Likert scale, and were asked a series of open-ended ques-

tions about what they liked and disliked about each interface, and if 

they found any aspect particularly surprising or frustrating.

Hypotheses
I believed that subjects would find it easier to move their hands 

between objects on the table, than to move between towers on 
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the screen with the mouse, and that the tactile feedback from Pico 

would cause subjects to develop an impression more quickly about 

whether a given problem solving strategy would be effective or not. 

As a result, I expected subjects to favor a series of quick manipula-

tions of different groups of pucks, rather than more prolonged peri-

ods of interaction with a single object, when compared to behavior 

in the screen-based condition. This yields the first hypothesis:

H1: Users will shift their control between objects more often in the 

actuation condition than with the screen based condition.

Alternative mechanisms for constraining the motion of the cell-

phone towers are provided in the screen and Pico cases. While 

these provide similar functionality, I expect users will be more 

likely to use them in the Pico case:

H2: Users will constrain the motion of pucks more in the Pico case 

than the screen case.

Finally, I hypothesized that the differences I expected to see be-

tween the screen condition and the Pico condition would not 

be fully explained by the use of physical objects alone. Actuation 

would play a significant role as well:

H3: Users will shift their control between objects more often in the 

actuation condition than with the non-actuation condition.

Results
Data was collected using several methods. The application soft-

ware logged user input to a datafile for later analysis. However, in 

the Pico conditions (with and without actuation) it was difficult to 

determine what the user was doing by relying exclusively on the 

software logging feature. One reason is that occasional “hops” in 
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the puck location data might be mistaken for user interactions. 

As a result, for these conditions a videocamera was pointed at 

the interaction surface such that the user’s hand motions could 

later be analyzed. 

We compared the number of times each subject switched ob-

jects on the tabletop conditions, and compared this to the num-

ber of times each subject switched objects in the screen based 

condition. The results are shown in fi gure 7. We found that the 

number of these cycles in the Pico condition was signifi cantly 

higher than in the Pico without actuation condition (p < 0.05) 

and the screen condition (p < 0.001). The Pico without actua-

tion condition also involved more switching between objects 

than the screen condition (p < 0.001). Subjects also used con-

straints more often in the Pico condition than the screen condi-

tion as shown in fi gure 8 (p < 0.05). 

Figure 7: Number of interface objects acquired per second in 
the three experimental conditions. Mean and standard devia-
tion are shown.

0.09

0.17

0.21
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Four subjects were able to complete the task in the screen condi-

tion, versus fi ve in the Pico without actuation condition, and seven 

in the Pico condition. In the interest of seeing if there was a rela-

tionship between the tendency to switch objects and successfully 

completing the task, I grouped the data across all tasks into two 

groups, trials in which the subject completed the task, and trials in 

which the subject did not. I compared these two groups with a one 

factor ANOVA and found that in trials where subjects completed 

the task successfully, they tended to switch signifi cantly (p < 0.05) 

more frequently between moving different cellphone towers in the 

interface, shown in fi gure 9.

Figure 8: Number of constraints used 
per minute of interaction in the pico 
and screen conditions. Constraints 
were not used in the pico without ac-
tuation condition. Mean and standard 
deviation are shown.

1.77

0.9
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Subjects also ranked each interface on a 7-point Likert scale 

regarding its ease of use. These results are summarized in fi gure 

10. The only difference between these scores that reached statisti-

cal signifi cance was the difference between the Screen and Pico 

interfaces (p < 0.05). 

Users’ qualitative reactions to Pico were more divided than the 

quantitative data might suggest. In response to Pico one subject 

said “I felt like if I moved one thing the computer was trying to 

balance it by moving the others.” Another said “I got the feel-

ing of where they [the towers] wanted to go... It was better than 

seeing.” A third subject said “I felt like I was collaborating with 

the computer to solve the problem” and that in the Pico case it 

“feels like the computer wants to help more.” Some subjects also 

appreciated the ability to move more than one object at a time in 

the Pico conditions, both with and without actuation. 

0.19

0.14

Figure 9: Number of interface objects acquired per second across all ex-
perimental conditions. In the “completed task” category are trials in which 
the subject was able to obtain a total layout score of 400 or greater. The 
“did not complete” category shows trials in which the score of 400 was not 
reached. Mean and standard deviation are shown.
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At the same time, some users seemed to fi nd the system a bit 

frustrating. One user commented that he would prefer if the user 

and computer “take turns” while moving the towers, rather than 

moving them at the same time. He felt that the movement was 

imprecise, and commented that “I like to have really precise con-

trol when I’m interacting.” Another commented that he “wasn’t 

sure how to benefi t from the computer’s input.” A third expressed 

a preference for moving only one object in the interface at a time. 

In his interaction with Pico, this subject placed weights on top of 

three of the objects, effectively limiting the computer’s actuation 

to just one object at a time. Two subjects commented that it was 

very easy to establish constraints with the mouse because, in the 

words of one, “all I have to do is click.” They seemed to prefer 

this approach to the Pico condition because it required less physical 

movement. Users uniformly found it frustrating when the comput-

er occasionally moved an object on its own in a way that decreased 

the overall score. They seemed less tolerant of computer error than 

they might be of human error. 

4.3

5.1 5.3

Figure 10: Subjects’ average ranking of ease of use of the 
three experimental conditions on a 7-point Likert scale. 
Error bars represent standard deviation.
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Subjects in the two Pico conditions used a variety of hand gestures 

to manipulate multiple objects at the same time. These included 

using both hands, using separate fingers on a hand to independently 

manipulate distinct pucks and pinning pucks to the table to con-

strain their motion. Often in the case of constraining motion, a 

user would begin by holding a puck in place with one hand, while 

reaching for a weight to place on top of the puck with the other 

hand, which he or she would then quickly substitute for the hand 

pinning the object, freeing both hands to interact with other ob-

jects. Constraints were used primarily in two ways. One was to fa-

cilitate a “step by step” problem solving process, where users would 

try to find the best place for a particular tower, and then lock it 

down, and move to the next one. The other was in response to 

motions the computer was causing. Users would employ a barrier 

or weight to prevent an action from happening again. 

Another interesting strategy was a repeated “poking” gesture that 

subjects used on the Pico condition. Subjects would push a puck 

with an extended index finger about an inch or two on the table, 

and then see how the computer responded and the coverage score 

changed. Depending on the result, they might poke the same object 

again or switch to another one, at times moving an object from one 

side of the table to the other using a series of short pushes.

The results indicate that subjects switch between manipulating dif-

ferent objects more frequently using Pico than with the other two 

conditions. This more rapid switching between objects suggests that 

users iterate more rapidly among alternative problem solving strate-

gies (e.g. moving puck A, versus puck B, versus A and B together 

etc.) with Pico using actuation than with the other two conditions. 

This difference appears partially due to the ease of grasping and 

manipulating objects on the table (also seen in the difference seen 
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between the screen and Pico without actuation conditions) and par-

tially due to the Actuation in the Pico condition. The data also sug-

gests that in the tasks presented to the subjects, switching between 

multiple problem solving strategies (a breadth-first search) was more 

effective than exploring fewer strategies for a longer period of time 

(a depth-first search). 

In summary, the results suggest that Pico makes it easier to quickly 

explore various potential solutions to a spatial layout problem, when 

compared to Pico without actuation, and the screen-based interface. 

As a result subjects are more inclined toward many brief interactions 

with multiple pucks rather than longer periods of sustained explo-

ration with a single object. In the Pico condition, subjects seemed 

to more readily reject approaches that did not seem promising, 

and were more likely to successfully complete the task. Due to the 

prevalence of brief interactions with different pucks in the system, 

and the faster decision making with Pico’s tactile feedback, I believe 

Pico is a step toward interaction more like what we experience with 

purely mechanical systems. Of course, the feedback from a mechani-

cal system such as a bicycle is immediate; it is not delayed by the 

computer as in Pico. However, as the sensing technology gets faster, 

and computers increase in speed, we can expect the tactile dialog 

that happens between Pico and the user to occur at an increasing 

rate, which should provide further usability benefits.
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7 Discussion and Future Work

One of the main accomplishments of this thesis is that it supports 

improvisation with physical objects in the user’s environment to 

help perform the user’s task. While many of the objects that sur-

round us daily are designed for a specific function, we often ap-

propriate them for tasks other than their intended function when 

needed. For example, a chair can also be used as a doorstop or a 

stool, or as a place to hang one’s jacket. Our mechanical intuition 

about how objects in the world interact with each other makes 

it easy to think about how to adapt familiar objects to new kinds 

of problems. Because Pico translates aspects of a computational 

system into a mechanical one, we suddenly have at our disposal 

the rich variety of physical objects in our environment to help us 

interact with it. In an improvisational manner, one can experi-

ment with using different objects on the tabletop interaction sur-

face until finding one that behaves as desired. For example, in the 

cellphone tower placement application discussed throughout this 

thesis, one might use a coffee cup to keep a tower out of a certain 

area. Later, one might want to increase the radius of that forbid-

den area by replacing the coffee cup with a larger diameter object 

such as a roll of tape. 
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Interfaces that support this temporary repurposing of physical ob-

jects to help perform a task could be called “improvisational inter-

faces.” This improvisation can take place on several different levels:

Object as symbol - Users may associate an object that is mean-

ingful to them with an interface element such as an RFID tag to 

give that object an identity. One example of this approach is in the 

Sensetable system, where one might place a nearby object on top of 

a generic puck as a symbol to give that object a distinct meaning in 

the context of the application. This object would serve as a mental 

reminder to the users and would not be sensed by the computer. 

A battery taped to the top of a Sensetable puck, placed there by the user to 
represent that pucks role as an energy source in a physics simulation.



135

Object as form - A richer level of improvisation with physical 

objects involves selecting and using objects based on their physical 

form. This interaction can be seen in the Illuminating Clay [Piper 

2002] landscape planning tool. The system uses a laser scanner to 

create a topographic model of the terrain on the tabletop. Any 

object can be used to create that terrain, ranging from clay, wooden 

blocks and cardboard to more unconventional repurposed modeling 

materials that may happen to be nearby, such as office supplies.

Object as part of mechanical system - A still richer level of im-

provisation is possible when the mechanical properties of an object, 

such as friction, mass and flexibility, are incorporated into an in-

terface. This occurs through the integration of a physical feedback 

loop into the interface. This level of integration is present in Pico, 

where physical objects such as rubber bands can guide software pa-

A wooden cylinder used as a stand-in for the physical form of a building 
in the Illuminating Clay landscape planning system.
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rameters toward similar values, and physical barriers, such as a ruler 

or a book, can control the range of values a software parameter can 

obtain. My favorite example of this repurposing is the use of soap 

and water to lubricate part of the tabletop surface so that software 

parameters associated with that part of the table would change more 

readily than others. In this level, the true improvisational interface, 

the interface designer relinquishes responsibility for the incorpora-

tion of physical affordances and metaphors, and empowers the user 

to appropriate any of a huge variety of objects at his or her disposal 

in a way that is useful in the context of the task at hand. This shift 

is in contrast with most tangible interfaces, in which the use of 

physical affordances and metaphors is the job of the designer, and is 

unchangeable by the user.

A coffee cup, preventing a cellular telephone tower in the Pico system 
from entering a certain area of the map.
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Why Improvisational Interfaces?
The advantages of improvisational interfaces center around the idea 

that immediate, imprecise interaction and feedback is often more 

desirable than the rigid, precise and slower interaction we have be-

come so accustomed to when using computes. Some of the specific 

advantages of the improvisational approach are:

- Improvisational interfaces provide the user with a rich, familiar 

vocabulary with which to interact with the computer. The vo-

cabulary is familiar because the user can employ objects he or she 

has daily experience with and have reasonable assumptions about 

how these objects will behave in the context of the interface. The 

richness of the interaction vocabulary comes from the diversity of 

physical objects surrounding us every day, and the resulting diversi-

ty of mechanical interactions that are possible on the tabletop inter-

face. For example, a common construct in GUI interaction is that 

of the “lock”, an attribute that one sets on an object on the screen 

to prevent it from being changed. This object may be a file, part of 

an image, etc. In a GUI, these locks are almost always completely 

on or off: something can either be changed or not. With Pico, 

there are infinite possibilities between “locked” and “unlocked” 

because there are an infinite number of ways to constrain the mo-

tion of a puck. One could place a heavy weight on top of a puck, 

making it impossible for the computer to move it (but still possible 

for the user), or one could place a small weight on a puck, slowing 

down its motion only slightly due to increased friction. There are 

many possibilities in between these two extremes, limited only by 

the user’s own hands and the objects at his or her disposal. 
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 - Improvisational interfaces change application behavior faster 

than programming. All of the interactions presented in this paper 

could be simulated on-screen using custom-developed computer 

software. However, each of these possible interactions would have 

to be foreseen to be included, and many would likely take a tal-

ented programmer hours if not days to accurately simulate. With 

the improvisational approach, this type of reprogramming is not 

necessary. One does not even have to restart the program. If one 

wants to interact with an application in a way not considered by 

the developers, one simply adjusts the constraints of the system by 

manipulating objects on the tabletop. This manipulation of physical 

objects takes seconds, rather than hours, to do.

 - Improvisational interfaces encourage accidental discoveries. 

They make it so easy to experiment that people are bound to make 

mistakes. As the history of scientific discovery shows, these mistakes 

are often critical in helping people solve complex problems, or ap-

proach them in a new way. When a mistake is made, the ease of 

understanding the cause and effect relationships between the differ-

ent parts of the mechanical system make it easy to understand the 

implications of the error. 

The vast array of possible interactions present with an interface that 

can incorporate everyday physical objects can be described by what 

Prof. John Maeda once called Patten’s Law of Opportunity. 

Specifically, that:

“The opportunities for improvisation within an interface increase propor-

tionately to the square of the number of types of physical objects one can use 

within the interface.”
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Each new physical object added to the tabletop can interact me-

chanically with all of the other objects already on the table, leading 

to a number of possible interactions that grows with the square of 

the number of available objects, whether the objects are right next 

to the user, or waiting on local store shelves. With an improvisa-

tional interface like Pico, each of these objects becomes a potential 

improvised physical tool to solve computational problems.

What Next?
The applications implemented on the Pico system to date have 

been spatial in nature. However, there are a wide variety of applica-

tions that do not have literal interpretations of space that could be 

mapped to the interaction space Pico provides. For example, in a 

business supply chain simulation, distance between objects on the 

table could represent shipping time between those locations. One 

might change the allocations of shipping resources to the various 

parts of the supply chain by moving the objects, while the comput-

er ensured that the total shipping budget was not exceeded. 

 

Another area to be explored is the use of actuation as an expres-

sive medium. When collaborating with Roberto Aimi to explore 

how sound could be integrated with Pico, we found that the sound 

emphasized the playfulness of the interaction. It was as if the com-

puter was trying to tell us something. When we would move an 

object, and the computer would respond be immediately moving 

it back to where it was before, it created a call and response dialog 

with an interesting sonic rhythm. We are working on developing 

this further, creating a distant sibling of the Audiopad that incorpo-

rates physical forces as an expressive musical and visual element in a 

tabletop composition.
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Pico points to opportunities for a larger degree of improvisation 

with everyday physical objects in the context of human-computer 

interfaces. My hope is that Pico is just the beginning, merely the 

first exploration of this idea within the larger context of interaction 

design. We can easily imagine interfaces where mechanical actua-

tion is incorporated into many different types of interfaces off of the 

tabletop, creating free-form, improvisational interfaces that encour-

age experimentation, helping users make discoveries and change 

perspectives. Some ideas for these next steps follow:

Jumping objects

A user places a physical token 
into a reader.

The software registers this 
action, and determines that 
this action is forbidden ac-
cording to a rule defined in 
software.

So, the reader ejects the block!
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Actuated Sliders

An array of linear potentiometers 
with motors attached, as used in 
some high end audio equipment, 
could be used in the same way as 
is Pico in this thesis, for a different 
set of problems. 

The user’s movement of one slider 
changes internal software state, 
reflected in the positions of other 
sliders. These movements could be 
physically constrained in a variety 
of ways with everyday physical ob-
jects, for example to set an upper 
and lower bound for a parameter.

Actuated Beachballs

Spheres, potentially of different sizes, with an inter-
nal motors and CPUs, roll around under computer 
control to act as an interface to digital informa-
tion. These objects are perhaps better suited to the 
three dimensionality of the physical world than are 
cylindrical Pico pucks. These could roll up and down 
hills, be placed on shelves of varying heights, and be 
moved by users to expand the concepts in this thesis 
to interaction with 3D data.
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Turntable

A turntable rotates under 
computer control to represent 
a changing parameter, such as 
the passage of time in an in-
teractive simulation or musical 
performance.  

The user can grab this wheel 
and spin it as desired to move 
forward or backward along the 
timeline. When the user releas-
es the wheel, it keeps spinning 
a its current velocity until the 
user touches it again.

Inflatables

The volume of air inside an inflat-
able reservoir represents and 
controls a parameter in software. 

The computer’s inflation of the 
object can be countered by the 
user squeezing, or by placing the 
inflatable inside a small box, for 
example. 
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